@article{TVP_2014_59_1_a6,
author = {D. Varron},
title = {A note on weak convergence, large deviations, and the bounded approximation property},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {130--149},
year = {2014},
volume = {59},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a6/}
}
D. Varron. A note on weak convergence, large deviations, and the bounded approximation property. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 130-149. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a6/
[1] Arcones M., “The large deviation principle for stochastic processes, I”, Teoriya veroyatn. i ee primen., 47:4 (2002), 567–583 | MR
[2] Arcones M., “The large deviation principle for stochastic processes, II”, Teoriya veroyatn. i ee primen., 48:1 (2003), 122–150 | DOI | MR | Zbl
[3] Berg I., Lëfstrem I., Interpolyatsionnye prostranstva: Vvedenie, Mir, M., 1980, 264 pp. | MR
[4] Billingsley P., Convergence of probability measures, Wiley, New York, 1968, 253 pp. | MR | Zbl
[5] Chernoff H., “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Statist., 23:4 (1952), 493–507 | DOI | MR | Zbl
[6] Cramér H., “Sur un nouveau théorème limite de la théorie des probabilités”, Actual. Sci. Industr., 736 (1938), 5–23 | Zbl
[7] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993, 346 pp. | MR | Zbl
[8] Dvoretzky A., Kiefer J., Wolfowitz J., “Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator”, Ann. Math. Statist., 27:3 (1956), 642–669 | DOI | MR | Zbl
[9] Ellis R. S., “Large deviations for a general class of random vectors”, Ann. Probab., 12:1 (1984), 1–12 | DOI | MR | Zbl
[10] Finkelstein H., “The law of the iterated logarithm for empirical distributions”, Ann. Math. Statist., 42:2 (1971), 607–615 | DOI | MR | Zbl
[11] D. Hamadouche, “Weak convergence of smoothed empirical processes in Hölder spaces”, Statist. Probab. Lett., 36:4 (1998), 393–400 | DOI | MR | Zbl
[12] Hoffmann-Jørgensen J., Stochastic Processes on Polish Spaces, Various Publications Ser., 39, Aarhus Universitet, Aarhus, 1991, 278 pp. | MR | Zbl
[13] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Springer-Verlag, Berlin–New York, 1997, 188 pp. | MR | Zbl
[14] Lynch J., Sethuraman J., “Large deviations for processes with independent increments”, Ann. Probab., 15:2 (1987), 610–627 | DOI | MR | Zbl
[15] Pukhalskii A. A., “K teorii bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 38:3 (1993), 553–562 | MR
[16] Singer I., Bases in Banach Spaces, v. II, Springer-Verlag, Berlin–New York, 1981, 880 pp. | MR | Zbl
[17] Suquet C., “Tightness in Schauder decomposable Banach spaces”, Amer. Math. Soc. Transl., 193 (1999), 201–224 | MR
[18] Van der Vaart A., Wellner J., Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996, 508 pp. | MR
[19] Varron D., “Une remarque concernant les principes de grandes déviations dans les espaces Schauder décomposables”, C.R. Math. Acad. Sci. Paris, 343:5 (2006), 345–348 | DOI | MR | Zbl