Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 28-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_1_a2,
     author = {V. A. Vatutin and A. Iksanov and A. V. Marynych},
     title = {Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of {Bernoulli}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {28--60},
     year = {2014},
     volume = {59},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - A. Iksanov
AU  - A. V. Marynych
TI  - Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 28
EP  - 60
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a2/
LA  - ru
ID  - TVP_2014_59_1_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A A. Iksanov
%A A. V. Marynych
%T Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 28-60
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a2/
%G ru
%F TVP_2014_59_1_a2
V. A. Vatutin; A. Iksanov; A. V. Marynych. Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 28-60. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a2/

[1] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, M., 1976, 223 pp. | MR

[2] Mirakhmedov Sh. A., “Randomizirovannye razdelimye statistiki v obobschennoi skheme razmescheniya po schetnomu mnozhestvu yacheek”, Diskret. matem., 1:4 (1989), 46–62 | MR | Zbl

[3] Mirakhmedov Sh. A., “Randomizirovannye razdelimye statistiki v skheme nezavisimogo razmescheniya chastits po yacheikam”, Diskret. matem., 2:2 (1990), 97–111 | MR | Zbl

[4] Mikhailov V. G., “Tsentralnaya predelnaya teorema dlya skhemy nezavisimogo razmescheniya chastits po yacheikam”, Tr. MIAN, 157, 1981, 138–152

[5] Shiryaev A. N., Veroyatnost, 1, MTsNMO, M., 2007, 551 pp.

[6] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR

[7] Bauer H., Measure and Integration Theory, de Gruyter, Berlin, 2001, 230 pp. | MR | Zbl

[8] Bingham N. H., “Limit theorems for occupation times of Markov processes”, Z. Wahrscheinlichkeitstheor. verw. Geb., 17 (1971), 1–22 | DOI | MR | Zbl

[9] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1989, 512 pp. | MR | Zbl

[10] Çinlar E., Introduction to Stochastic Processes, Prentice-Hall Inc., Englewood Cliffs, 1975, 402 pp. | MR

[11] Durrett R., Liggett T. M., “Fixed points of the smoothing transformation”, Z. Wahrscheinlichkeitstheor. verw. Geb., 64 (1983), 275–301 | DOI | MR | Zbl

[12] Gnedin A. V., “The Bernoulli sieve”, Bernoulli, 10:1 (2004), 79–96 | DOI | MR | Zbl

[13] Gnedin A., Hansen A., Pitman J., “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probab. Surv., 4 (2007), 146–171 | DOI | MR | Zbl

[14] Gnedin A., Iksanov A., “Regenerative compositions in the case of slow variation: a renewal theory approach”, Electron. J. Probab., 17 (2012), 77, 19 pp. | DOI | MR | Zbl

[15] Gnedin A., Iksanov A., Marynych A., “Limit theorems for the number of occupied boxes in the Bernoulli sieve”, Theory Stochastic Process, 16:2 (2010), 44–57 | MR | Zbl

[16] Gnedin A., Iksanov A., Marynych A., “The Bernoulli sieve: an overview”, Discr. Math. Theor. Comput. Sci., AM (2010), 329–342 | MR

[17] Gnedin A., Iksanov A., Negadajlov P., Rösler U., “The Bernoulli sieve revisited”, Ann. Appl. Probab., 19:4 (2009), 1634–1655 | DOI | MR | Zbl

[18] Gnedin A., Iksanov A., Roesler U., “Small parts in the Bernoulli sieve”, Discr. Math. Theor. Comput. Sci., Proc., AI (2008), 235–242 | MR

[19] Hall P., Heyde C. C., Martingale Limit Theory and Its Applications, Academic Press, New York, 1980, 308 pp. | MR

[20] Iglehart D. L., “Weak convergence of compound stochastic process, I”, Stochastic Process. Appl., 1 (1973), 11–31 | DOI | MR | Zbl

[21] Iksanov A., “On the number of empty boxes in the Bernoulli sieve, I”, Stochastics, 85:6 (2013), 946–959 | MR | Zbl

[22] Iksanov A., “On the number of empty boxes in the Bernoulli sieve, II”, Stochastic Process. Appl., 122:7 (2012), 2701–2729 | DOI | MR | Zbl

[23] Iksanov A., Marynych A., Meiners M., “Limit theorems for renewal shot noise processes with eventually decreasing response functions”, Stochastic Process. Appl., 124:6 (2014), 2132–2170 | DOI | MR

[24] Karlin S., “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17 (1967), 373–401 | MR | Zbl

[25] Mikosch T., Resnick S., “Activity rates with very heavy tails”, Stochastic Process. Appl., 116:2 (2006), 131–155 | DOI | MR | Zbl

[26] Resnick S., Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, 1987, 320 pp. | MR | Zbl

[27] Resnick S., Adventures in Stochastic Processes, Birkhäuser, Boston, 2005 | MR

[28] Sgibnev M. S., “Renewal theorem in the case of an infinite variance”, Sib. Math. J., 22 (1982), 787–796 | DOI | MR | Zbl