@article{TVP_2014_59_1_a12,
author = {M. Przystalski},
title = {A note on a law of iterated logarithm for bounded $N$-demimartingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {197--201},
year = {2014},
volume = {59},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a12/}
}
M. Przystalski. A note on a law of iterated logarithm for bounded $N$-demimartingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 197-201. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a12/
[1] Christofides T. C., “Maximal inequalities for $N$-demimartingales”, Arch. Inequal. Appl., 1:3–4 (2003), 397–408 | MR
[2] Christofides T. C., Hadjikyriakou M., “Exponential inequalities for $N$-demimartingales and negatively associated random variables”, Statist. Probab. Lett., 79:19 (2009), 2060–2065 | DOI | MR | Zbl
[3] Christofides T. C., Hadjikyriakou M., “Maximal and moment inequalities for demimartingales and $N$-demimartingales”, Statist. Probab. Lett., 82:3 (2012), 683–691 | DOI | MR | Zbl
[4] Hadjikyriakou M., “Marcinkiewicz–Zygmund inequality for nonnegative $N$-demimartingales and related results”, Statist. Probab. Lett., 81:6 (2011), 678–684 | DOI | MR | Zbl
[5] Hu S., Wang X., Yang W., Wang X., “Some inequalities for demiratingales and $N$-demimartingales”, Statist. Probab. Lett., 82:2 (2012), 232–239 | DOI | MR | Zbl
[6] Joag-Dev K., Proschan F., “Negative association of random variables with applications”, Ann. Statist., 11 (1983), 286–295 | DOI | MR | Zbl
[7] Lamperti Dzh., Sluchainye protsessy: obzor matematicheskoi teorii, Vischa shkola, Kiev, 1983, 224 pp. | Zbl
[8] Prakasa Rao B. L. S., “On some maximal inequalities for demisubmartingales and $N$-demisupermartingales”, J. Inequal. Pure Appl. Math., 8:4 (2007), 112, 17 | MR | Zbl
[9] Wang X., Hu S., Prakasa Rao B. L. S., Yang W., “Maximal inequalities for $N$-demimartingale and strong law of large numbers”, Statist. Probab. Lett., 81:9 (2001), 1348–1353 | DOI | MR