Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 187-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_1_a11,
     author = {L. V. Rozovskii},
     title = {Superlarge deviation probabilities for sums of independent random variables with exponential decreasing {distributions.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {187--196},
     year = {2014},
     volume = {59},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 187
EP  - 196
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/
LA  - ru
ID  - TVP_2014_59_1_a11
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 187-196
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/
%G ru
%F TVP_2014_59_1_a11
L. V. Rozovskii. Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 187-196. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/

[1] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl

[2] Borovkov A. A., Rogozin B. A., “O tsentralnoi predelnoi teoreme v mnogomernom sluchae”, Teoriya veroyatn. i ee primen., 10:1 (1965), 61–69 | MR | Zbl

[3] Höglund T., “A unified formulation of the central limit theorem for small and large deviations from the mean”, Z. Wahrscheinlichkeitstheor. verw. Geb., 49:1 (1979), 105–117 | DOI | MR | Zbl

[4] Rozovskii L. V., “O nizhnei granitse veroyatnostei bolshikh uklonenii dlya vyborochnogo srednego pri vypolnenii usloviya Kramera”, Zap. nauch. sem. POMI, 278, 2001, 208–224

[5] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii dlya nekotorykh klassov raspredelenii, udovletvoryayuschikh usloviyu Kramera”, Zap. nauch. sem. POMI, 298, 2003, 161–185

[6] Daniels H. E., “Saddlepoint approximations in statistics”, Ann. Math. Statist., 25:4 (1954), 631–650 | DOI | MR | Zbl

[7] Nagaev A. V., “Bolshie ukloneniya dlya odnogo klassa raspredelenii”, Predelnye teoremy teorii veroyatnostei, Izd-vo AN UzSSR, Tashkent, 1963, 56–68

[8] Nagaev A. V., “Kramerovskie bolshie ukloneniya v sluchae, kogda krainee sopryazhennoe raspredelenie imeet tyazhelyi khvost”, Teoriya veroyatn. i ee primen., 43:3 (1998), 456–475 | DOI | MR | Zbl

[9] Rozovskii L. V., “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | DOI | MR

[10] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera, II”, Teoriya veroyatn. i ee primen., 51:4 (2006), 641–673 | DOI | MR

[11] Rozovskii L. V., “Veroyatnosti sverkhbolshikh uklonenii summ nezavisimykh sluchainykh velichin s eksponentsialno ubyvayuschim raspredeleniem”, Teoriya veroyatn. i ee primen., 52:1 (2007), 175–179 | DOI | MR

[12] Rozovsky L. V., “Superlarge deviation probabilities for sums of independent lattice random variables with exponential decreasing tails”, Statist. Probab. Lett., 82:1 (2012), 72–76 | DOI | MR | Zbl

[13] Rozovskii L. V., “O veroyatnostyakh malykh uklonenii polozhitelnykh sluchainykh velichin”, Zap. nauch. sem. POMI, 320, 2004, 150–159

[14] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR