@article{TVP_2014_59_1_a11,
author = {L. V. Rozovskii},
title = {Superlarge deviation probabilities for sums of independent random variables with exponential decreasing {distributions.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {187--196},
year = {2014},
volume = {59},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/}
}
TY - JOUR AU - L. V. Rozovskii TI - Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2014 SP - 187 EP - 196 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/ LA - ru ID - TVP_2014_59_1_a11 ER -
%0 Journal Article %A L. V. Rozovskii %T Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II %J Teoriâ veroâtnostej i ee primeneniâ %D 2014 %P 187-196 %V 59 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/ %G ru %F TVP_2014_59_1_a11
L. V. Rozovskii. Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distributions. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 187-196. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a11/
[1] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl
[2] Borovkov A. A., Rogozin B. A., “O tsentralnoi predelnoi teoreme v mnogomernom sluchae”, Teoriya veroyatn. i ee primen., 10:1 (1965), 61–69 | MR | Zbl
[3] Höglund T., “A unified formulation of the central limit theorem for small and large deviations from the mean”, Z. Wahrscheinlichkeitstheor. verw. Geb., 49:1 (1979), 105–117 | DOI | MR | Zbl
[4] Rozovskii L. V., “O nizhnei granitse veroyatnostei bolshikh uklonenii dlya vyborochnogo srednego pri vypolnenii usloviya Kramera”, Zap. nauch. sem. POMI, 278, 2001, 208–224
[5] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii dlya nekotorykh klassov raspredelenii, udovletvoryayuschikh usloviyu Kramera”, Zap. nauch. sem. POMI, 298, 2003, 161–185
[6] Daniels H. E., “Saddlepoint approximations in statistics”, Ann. Math. Statist., 25:4 (1954), 631–650 | DOI | MR | Zbl
[7] Nagaev A. V., “Bolshie ukloneniya dlya odnogo klassa raspredelenii”, Predelnye teoremy teorii veroyatnostei, Izd-vo AN UzSSR, Tashkent, 1963, 56–68
[8] Nagaev A. V., “Kramerovskie bolshie ukloneniya v sluchae, kogda krainee sopryazhennoe raspredelenie imeet tyazhelyi khvost”, Teoriya veroyatn. i ee primen., 43:3 (1998), 456–475 | DOI | MR | Zbl
[9] Rozovskii L. V., “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | DOI | MR
[10] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera, II”, Teoriya veroyatn. i ee primen., 51:4 (2006), 641–673 | DOI | MR
[11] Rozovskii L. V., “Veroyatnosti sverkhbolshikh uklonenii summ nezavisimykh sluchainykh velichin s eksponentsialno ubyvayuschim raspredeleniem”, Teoriya veroyatn. i ee primen., 52:1 (2007), 175–179 | DOI | MR
[12] Rozovsky L. V., “Superlarge deviation probabilities for sums of independent lattice random variables with exponential decreasing tails”, Statist. Probab. Lett., 82:1 (2012), 72–76 | DOI | MR | Zbl
[13] Rozovskii L. V., “O veroyatnostyakh malykh uklonenii polozhitelnykh sluchainykh velichin”, Zap. nauch. sem. POMI, 320, 2004, 150–159
[14] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 416 pp. | MR