Second order approximation for distribution of maximum of random walk with negative drift and infinite variance
Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 5-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2014_59_1_a1,
     author = {A. A. Borovkov},
     title = {Second order approximation for distribution of maximum of random walk with negative drift and infinite variance},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {5--27},
     year = {2014},
     volume = {59},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - Second order approximation for distribution of maximum of random walk with negative drift and infinite variance
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2014
SP  - 5
EP  - 27
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/
LA  - ru
ID  - TVP_2014_59_1_a1
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T Second order approximation for distribution of maximum of random walk with negative drift and infinite variance
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2014
%P 5-27
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/
%G ru
%F TVP_2014_59_1_a1
A. A. Borovkov. Second order approximation for distribution of maximum of random walk with negative drift and infinite variance. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 5-27. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/

[1] Veraverbeke N., “Asymptotic behaviour of Wiener–Hopf factors of a random walk”, Stochastic Process. Appl., 5 (1977), 27–37 | DOI | MR | Zbl

[2] Borovkov A. A., “O subeksponentsialnykh raspredeleniyakh i asimptotike raspredeleniya maksimuma posledovatelnykh summ”, Sib. matem. zhurn., 43:6 (2002), 1235–1264 | MR | Zbl

[3] Borovkov A. A., Borovkov K. A., Asimptoticheskii analiz sluchainykh bluzhdanii, v. 1, Medlenno ubyvayuschie raspredeleniya skachkov, Fizmatlit, M., 2008, 650 pp.

[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR

[5] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 2009, 652 pp.

[6] Bingham N. H., Goldie C. M., Teugels I. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl

[7] Borovkov A. A., “Insurance with borrowing. The first- and second-order approximations”, Adv. Appl. Probab., 41:4 (2009), 1141–1160 | DOI | MR | Zbl

[8] Geluk J. L., Pakes A. G., “Second order subexponential distributions”, J. Aust. Math. Soc. Ser. A, 51:1 (1991), 73–87 | DOI | MR | Zbl