@article{TVP_2014_59_1_a1,
author = {A. A. Borovkov},
title = {Second order approximation for distribution of maximum of random walk with negative drift and infinite variance},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {5--27},
year = {2014},
volume = {59},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/}
}
TY - JOUR AU - A. A. Borovkov TI - Second order approximation for distribution of maximum of random walk with negative drift and infinite variance JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2014 SP - 5 EP - 27 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/ LA - ru ID - TVP_2014_59_1_a1 ER -
A. A. Borovkov. Second order approximation for distribution of maximum of random walk with negative drift and infinite variance. Teoriâ veroâtnostej i ee primeneniâ, Tome 59 (2014) no. 1, pp. 5-27. http://geodesic.mathdoc.fr/item/TVP_2014_59_1_a1/
[1] Veraverbeke N., “Asymptotic behaviour of Wiener–Hopf factors of a random walk”, Stochastic Process. Appl., 5 (1977), 27–37 | DOI | MR | Zbl
[2] Borovkov A. A., “O subeksponentsialnykh raspredeleniyakh i asimptotike raspredeleniya maksimuma posledovatelnykh summ”, Sib. matem. zhurn., 43:6 (2002), 1235–1264 | MR | Zbl
[3] Borovkov A. A., Borovkov K. A., Asimptoticheskii analiz sluchainykh bluzhdanii, v. 1, Medlenno ubyvayuschie raspredeleniya skachkov, Fizmatlit, M., 2008, 650 pp.
[4] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[5] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 2009, 652 pp.
[6] Bingham N. H., Goldie C. M., Teugels I. L., Regular Variation, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[7] Borovkov A. A., “Insurance with borrowing. The first- and second-order approximations”, Adv. Appl. Probab., 41:4 (2009), 1141–1160 | DOI | MR | Zbl
[8] Geluk J. L., Pakes A. G., “Second order subexponential distributions”, J. Aust. Math. Soc. Ser. A, 51:1 (1991), 73–87 | DOI | MR | Zbl