On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 782-794 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_4_a8,
     author = {O. A. Butkovsky},
     title = {On ergodic properties of nonlinear {Markov} chains and stochastic {McKean{\textendash}Vlasov} equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {782--794},
     year = {2013},
     volume = {58},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a8/}
}
TY  - JOUR
AU  - O. A. Butkovsky
TI  - On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 782
EP  - 794
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a8/
LA  - ru
ID  - TVP_2013_58_4_a8
ER  - 
%0 Journal Article
%A O. A. Butkovsky
%T On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 782-794
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a8/
%G ru
%F TVP_2013_58_4_a8
O. A. Butkovsky. On ergodic properties of nonlinear Markov chains and stochastic McKean–Vlasov equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 782-794. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a8/

[1] Butkovskii O. A., “O skhodimosti nelineinykh markovskikh tsepei”, Dokl. RAN, 447:5 (2012), 483–485

[2] Veretennikov A. Yu., “Ob otsenkakh skorosti peremeshivaniya dlya stokhasticheskikh uravnenii”, Teoriya veroyatn. i ee primen., 32:2 (1987), 299-–308

[3] Dobrushin R. L., “Tsentralnaya predelnaya teorema dlya neodnorodnykh tsepei Markova, I”, Teoriya veroyatn. i ee primen., 1:1 (1956), 72-–89 | Zbl

[4] Pinsker M. S., Informatsiya i informatsionnaya ustoichivost sluchainykh velichin i protsessov, Izd-vo AN SSSR, M., 1960, 201 pp.

[5] Cattiaux P., Guillin A., Malrieu F., “Probabilistic approach for granular media equations in the non-uniformly convex case”, Probab. Theory Related Fields, 140:1 (2008), 19–40 | Zbl

[6] Frank T. D., “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations”, Phys. A, 331 (2004), 391–408 | DOI

[7] Ganz A., Approximation of equilibrium distributions of some stochastic systems with McKean–Vlasov interactions, Ph. D. Thesis, Université de Nice, Nice, 2008 | Zbl

[8] Hairer M., Convergence of Markov processes. Lecture Notes, , Univ. of Warwick, 2010 http://www.hairer.org/notes/convergence.pdf | Zbl

[9] Hairer M., Mattingly J. C., “Yet another look at Harris’ ergodic theorem for Markov chains”, Seminar on Stochastic Analysis, Random Fields and Applications VI, Birkhäuser, Basel, 2011, 109–117 | DOI | Zbl

[10] Jourdain B., Méléard S., Woyczynski W. A., “Nonlinear SDEs driven by Lévy processes and related PDEs”, ALEA Lat. Amer. J. Probab. Math. Statist., 4 (2008), 1–-29 | Zbl

[11] Kolokoltsov V. N., Nonlinear Markov Processes and Kinetic Equations, Cambridge Tracts in Math., 182, Cambridge Univ. Press, Cambridge, 2010, 375 pp. | Zbl

[12] McKean H. P., jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Natl. Acad. Sci. USA, 56:6 (1966), 1907–1911 | DOI | Zbl

[13] Meyn S., Tweedie R. L., Markov chains and stochastic stability, Cambridge Univ. Press, Cambridge, 2009, 594 pp. | Zbl

[14] Mishura Yu. S., Veretennikov A. Yu., Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations, Preprint, 2013

[15] Muzychka S. A., Vaninsky K. L., “A class of nonlinear random walks related to the Ornstein–Uhlenbeck process”, Markov Process. Related Fields, 17:2 (2011), 277–304 | Zbl

[16] Sznitman A.-S., “Topics in propagation of chaos”, Lecture Notes in Math., 1464, 1991, 165–251 | DOI | Zbl

[17] Veretennikov A. Yu., “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and Quasi-Monte Carlo Methods 2004, Springer, Berlin, 2006, 471–-486 | DOI | Zbl

[18] Wang F.-Y., “Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds”, Ann. Probab., 39:4 (2011), 1449–1467 | DOI | Zbl