Fluctuations of matrix entries of regular functions of sample covariance random matrices
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 752-780 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_4_a6,
     author = {S. O'Rourke and D. Renfrew and A. Soshnikov},
     title = {Fluctuations of matrix entries of regular functions of sample covariance random matrices},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {752--780},
     year = {2013},
     volume = {58},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a6/}
}
TY  - JOUR
AU  - S. O'Rourke
AU  - D. Renfrew
AU  - A. Soshnikov
TI  - Fluctuations of matrix entries of regular functions of sample covariance random matrices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 752
EP  - 780
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a6/
LA  - en
ID  - TVP_2013_58_4_a6
ER  - 
%0 Journal Article
%A S. O'Rourke
%A D. Renfrew
%A A. Soshnikov
%T Fluctuations of matrix entries of regular functions of sample covariance random matrices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 752-780
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a6/
%G en
%F TVP_2013_58_4_a6
S. O'Rourke; D. Renfrew; A. Soshnikov. Fluctuations of matrix entries of regular functions of sample covariance random matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 752-780. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a6/

[1] Anderson G. W., Guionnet A., Zeitouni O., An Introduction to Random Matrices, Cambridge University Press, Cambridge, 2010, 492 pp. | Zbl

[2] Bai Z. D., “Methodologies in spectral analysis of large-dimensional random matrices, a review”, Statist. Sinica, 9:3 (1999), 611–677 | Zbl

[3] Bai Z. D., Silverstein J., Spectral Analysis of Large Dimensional Random Matrices, 2nd ed., Springer, New York, 2010, 551 pp.

[4] Bai Z. D., Silverstein J. W., “No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices”, Ann. Probab., 26:1 (1998), 316–345 | DOI | Zbl

[5] Ben Arous G., Guionnet A., “Wigner matrices”, Oxford Handbook on Random Matrix Theory, eds. Akemann G., Baik J., Di Francesco P., Oxford University Press, New York, 2011

[6] Billingsley P., Probability and Measure, 3rd ed., Wiley, New York, 1995, 593 pp. | Zbl

[7] Davies E. B., “The functional calculus”, J. London Math. Soc., 52:1 (1995), 166–176 | DOI | Zbl

[8] D'Aristotile A., Diaconis P., Newman C., “Brownian motion and the classical groups”, IMS Lecture Notes, Monograph Series, 41, Inst. Math. Statist., Beachwood, 2003, 97–116 | DOI

[9] Durrett R., Probability: Theory and Examples, 4th ed., Cambridge University Press, Cambridge, 2010, 428 pp.

[10] Helffer B., Sjöstrand J., “Equation de Schrödinger avec champ magnetique et equation de Harper, Schrödinger Operators”, Lecture Notes in Phys., 345, 1989, 118–197 | DOI | Zbl

[11] Jiang T., How many entries of a typical orthogonal matrix can be approximated by independent normals?, Ann. Probab., 34:4 (2006), 1497–1529 | DOI | Zbl

[12] Jiang T., “The entries of Haar-invariant matrices from the classical compact groups”, J. Theor. Probab., 23:4 (2010), 1227–1243 | DOI | Zbl

[13] Khorunzhy A., Khoruzhenko B., Pastur L., “Asymptotic properties of large random matrices with independent entries”, J. Math. Phys., 37:10 (1996), 5033–5060 | DOI | Zbl

[14] Lytova A., Pastur L., “Fluctuations of matrix elements of regular functions of Gaussian random matrices”, J. Stat. Phys., 134:1 (2009), 147–159 | DOI | Zbl

[15] Lytova A., Pastur L., “Central limit theorem for linear eigenvalue statistics of random matrices with independent entries”, Ann. Probab., 37:5 (2009), 1778–1840 | DOI | Zbl

[16] Marchenko V. A., Pastur L. A., “Raspredelenie sobstvennykh znachenii v nekotorykh ansamblyakh sluchainykh matrits”, Matem. sb., 72:114 (1967), 507–536 | Zbl

[17] O'Rourke S., Renfrew D., Soshnikov A., “On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries”, J. Theor. Probab., 26:3 (2013), 750–780 | DOI

[18] Pastur L., Lytova A., Non-Gaussian limiting laws for the entries of regular functions of the Wigner matrices, arXiv: 1103.2345 [math.PR]

[19] Pizzo A., Renfrew D., Soshnikov A., “Fluctuations of matrix entries of regular functions of Wigner matrices”, J. Stat. Phys., 146:3 (2012), 550–591 | DOI | Zbl

[20] Pizzo A., Renfrew D., Soshnikov A., “On finite rank deformations of Wigner matrices”, Ann. Inst. H. Poincaré Probab. Stat., 49:1 (2013), 64–94 | DOI | Zbl

[21] Reed M., Simon B., Methods of Modern Mathematical Physics, v. 1, Functional Analysis, 2nd ed., Academic Press, New York, 1980 | Zbl

[22] Shcherbina M., “Central limit theorem for linear eigenvalue statistics of Wigner and sample covariance random matrices”, Zhurn. matem. fiz., anal., geom., 7:2 (2011), 176–192 | Zbl

[23] Shcherbina M., Letter from March 1, 2011

[24] Wigner E., “On the distribution of the roots of certain symmetric matrices”, Ann. Math., 67 (1958), 325–327 | DOI | Zbl