@article{TVP_2013_58_4_a5,
author = {W. Hong and H. Wang},
title = {Intrinsic branching structure within random walk on $\mathbf{Z}$},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {730--751},
year = {2013},
volume = {58},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a5/}
}
W. Hong; H. Wang. Intrinsic branching structure within random walk on $\mathbf{Z}$. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 730-751. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a5/
[1] Brémont J., “One-dimensional finite range random walk in random medium and invariant measure equation”, Ann. Inst. H. Poincare Probab. Statist., 45:1 (2009), 70–103 | DOI
[2] Dembo A., Zeitouni O., Large Deviations: Techniques and Applications, Springer, Berlin, 1998, 396 pp. | Zbl
[3] Hong W. M., Wang H. M., “Intrinsic branching structure within (L-1) random walk in random environment and its applications”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:1 (2013) | DOI
[4] Hong W. M., Zhang L., “Branching structure for the transient (1,R)-random walk in random environment and its applications”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:4 (2010), 589–618 | DOI | Zbl
[5] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio Math., 30 (1975), 145–168 | Zbl
[6] Kozlov S. M., “Metod usredneniya i bluzhdaniya v odnorodnykh sredakh”, Uspekhi matem. nauk, 40:2(242) (1985), 61–120
[7] Bolthausen E., Sznitman A. S., Ten lectures on random media, Birkhäuser Verlag, Basel, 2002, 116 pp. | Zbl
[8] Zeitouni O., “Random walks in random environment”, Lecture Notes in Math., 1837, 2004, 189–312 | DOI