Intrinsic branching structure within random walk on $\mathbf{Z}$
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 730-751 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_4_a5,
     author = {W. Hong and H. Wang},
     title = {Intrinsic branching structure within random walk on $\mathbf{Z}$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {730--751},
     year = {2013},
     volume = {58},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a5/}
}
TY  - JOUR
AU  - W. Hong
AU  - H. Wang
TI  - Intrinsic branching structure within random walk on $\mathbf{Z}$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 730
EP  - 751
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a5/
LA  - en
ID  - TVP_2013_58_4_a5
ER  - 
%0 Journal Article
%A W. Hong
%A H. Wang
%T Intrinsic branching structure within random walk on $\mathbf{Z}$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 730-751
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a5/
%G en
%F TVP_2013_58_4_a5
W. Hong; H. Wang. Intrinsic branching structure within random walk on $\mathbf{Z}$. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 730-751. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a5/

[1] Brémont J., “One-dimensional finite range random walk in random medium and invariant measure equation”, Ann. Inst. H. Poincare Probab. Statist., 45:1 (2009), 70–103 | DOI

[2] Dembo A., Zeitouni O., Large Deviations: Techniques and Applications, Springer, Berlin, 1998, 396 pp. | Zbl

[3] Hong W. M., Wang H. M., “Intrinsic branching structure within (L-1) random walk in random environment and its applications”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:1 (2013) | DOI

[4] Hong W. M., Zhang L., “Branching structure for the transient (1,R)-random walk in random environment and its applications”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:4 (2010), 589–618 | DOI | Zbl

[5] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio Math., 30 (1975), 145–168 | Zbl

[6] Kozlov S. M., “Metod usredneniya i bluzhdaniya v odnorodnykh sredakh”, Uspekhi matem. nauk, 40:2(242) (1985), 61–120

[7] Bolthausen E., Sznitman A. S., Ten lectures on random media, Birkhäuser Verlag, Basel, 2002, 116 pp. | Zbl

[8] Zeitouni O., “Random walks in random environment”, Lecture Notes in Math., 1837, 2004, 189–312 | DOI