On shape of trajectories of Gaussian processes having large massive excursions
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 672-694 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_4_a2,
     author = {E. V. Kremena and V. I. Piterbarg and Yu. Husler},
     title = {On shape of trajectories of {Gaussian} processes having large massive excursions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {672--694},
     year = {2013},
     volume = {58},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a2/}
}
TY  - JOUR
AU  - E. V. Kremena
AU  - V. I. Piterbarg
AU  - Yu. Husler
TI  - On shape of trajectories of Gaussian processes having large massive excursions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 672
EP  - 694
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a2/
LA  - ru
ID  - TVP_2013_58_4_a2
ER  - 
%0 Journal Article
%A E. V. Kremena
%A V. I. Piterbarg
%A Yu. Husler
%T On shape of trajectories of Gaussian processes having large massive excursions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 672-694
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a2/
%G ru
%F TVP_2013_58_4_a2
E. V. Kremena; V. I. Piterbarg; Yu. Husler. On shape of trajectories of Gaussian processes having large massive excursions. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 672-694. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a2/

[1] Adler R. J., The Geometry of Random Fields, Wiley, Chichster, 1981, 280 pp. | Zbl

[2] Belyaev Yu. K., Nosko V. P., “Kharakteristiki vybrosov za vysokii uroven gaussovskogo protsessa i ego ogibayuschei”, Teoriya veroyatn. i ee primen., 14:2 (1969), 302–314

[3] Watanabe H., “On asymptotic property of Gaussian processes, I”, Trans. Amer. Math. Soc., 148 (1970), 233–248 | DOI | Zbl

[4] Kremena E. V., “O forme vysokikh vybrosov gaussovskogo statsionarnogo protsessa”, Vestnik Mosk. un-ta (to appear)

[5] Kramer G., Lidbetter M. R., Statsionarnye sluchainye protsessy, Mir, M., 1969, 398 pp.

[6] Lidbetter M. R., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp.

[7] Lindgren G., “Some properties of a normal process near a local maximum”, Ann. Math. Statist., 41 (1970), 1870–1883 | DOI | Zbl

[8] Marcus M., Rosen J., Markov Processes, Gaussian Processes, and Local Times, Cambridge Univ. Press, Cambridge, 2006, 620 pp.

[9] Moskaleva M. S., “Slabaya skhodimost mer vysokogo urovnya gaussovskikh sluchainykh protsessov”, Teoriya veroyatnostei, teoriya sluchainykh protsessov i funktsionalnyi analiz, Izd-vo Mosk. un-ta, M., 1985, 42–46

[10] Nosko V. P., “Lokalnaya struktura odnorodnogo gaussovskogo sluchainogo polya v okrestnosti tochek vysokogo urovnya”, Teoriya veroyatn. i ee primen., 30:4 (1985), 722–736

[11] Nosko V. P., “Asimptoticheskie raspredeleniya kharakteristik vybrosov odnorodnogo gaussovskogo sluchainogo polya za vysokii uroven”, Teoriya veroyatn. i ee primen., 32:4 (1987), 722–733

[12] Pickands J. III, “Upcrossing probabilities for stationary Gaussian processes”, Trans. Amer. Math. Soc., 145 (1969), 51–73 | DOI | Zbl

[13] Piterbarg V. I., Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., 148, Amer. Math. Soc., Providence, 1996, 206 pp.

[14] Hüsler J., Ladneva A., Piterbarg V., “On clusters of high extremes of Gaussian stationary processes with $\varepsilon$-separation”, Electron J. Probab., 15 (2010), 59, 1825–1862 | Zbl