@article{TVP_2013_58_4_a1,
author = {A. A. Borovkov and A. A. Mogul'skii},
title = {Moderately large deviation principles for trajectories of random walks and processes with independent increments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {648--671},
year = {2013},
volume = {58},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a1/}
}
TY - JOUR AU - A. A. Borovkov AU - A. A. Mogul'skii TI - Moderately large deviation principles for trajectories of random walks and processes with independent increments JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2013 SP - 648 EP - 671 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a1/ LA - ru ID - TVP_2013_58_4_a1 ER -
%0 Journal Article %A A. A. Borovkov %A A. A. Mogul'skii %T Moderately large deviation principles for trajectories of random walks and processes with independent increments %J Teoriâ veroâtnostej i ee primeneniâ %D 2013 %P 648-671 %V 58 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a1/ %G ru %F TVP_2013_58_4_a1
A. A. Borovkov; A. A. Mogul'skii. Moderately large deviation principles for trajectories of random walks and processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 648-671. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a1/
[1] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 12:4 (1967), 635–654 | Zbl
[2] Varadhan S. R. S., “Asymptotic probabilities and differential equations”, Comm. Pure Appl. Math., 19:3 (1966), 261–286 | DOI | Zbl
[3] Mogulskii A. A., “Bolshie ukloneniya dlya traektorii mnogomernykh sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 21:2 (1976), 309–323 | Zbl
[4] Borovkov A. A., Mogulskii A. A., “Printsipy bolshikh uklonenii dlya traektorii sluchainykh bluzhdanii. I; II; III”, Teoriya veroyatn. i ee primen., 56:4 (2011), 627–655 ; 57:1 (2012), 3–34 ; 58:1 (2013), 37–52 | DOI
[5] Borovkov A. A., Borovkov K. A., Asimptoticheskii analiz sluchainykh bluzhdanii, v. 1, Medlenno ubyvayuschie raspredeleniya skachkov, Fizmatlit, M., 2008, 652 pp.
[6] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye i integralnye teoremy dlya summ sluchainykh velichin s semieksponentsialnymi raspredeleniyami”, Cib. matem. zhurn., 47:6 (2006), 1218–1257 | Zbl
[7] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.
[8] Petrov V. V., “Predelnye teoremy dlya bolshikh uklonenii pri narushenii usloviya Kramera”, Vestn. LGU, ser. matem., mekh., astron., 1963, no. 19, 49–68
[9] Saulis L., Statulyavichus V., Predelnye teoremy o bolshikh ukloneniyakh, Mokslas, Vilnyus, 1989, 206 pp.
[10] Nagaev S. V., “Nekotorye predelnye teoremy dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 10:2 (1965), 231–254 | Zbl
[11] Mikosh T., Nagaev A. V., “Large deviations of heavy-tailed sums with applications in insurance”, Extremes, 1, 81–110 | DOI
[12] Nagaev A. V., “Integralnye predelnye teoremy s uchetom bolshikh uklonenii, kogda ne vypolneno uslovie Kramera. I; II”, Teoriya veroyatn. i ee primen., 14:1 (1969), 51–63 ; 14:2, 203–216
[13] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii na vsei osi”, Teoriya veroyatn. i ee primen., 38:1 (1993), 79–109 | Zbl
[14] Borovkov A. A., Mogulskii A. A., “O printsipakh bolshikh uklonenii v metricheskikh prostranstvakh”, Cib. matem. zhurn., 51:6 (2010), 1251–1269 | Zbl
[15] Borovkov A. A., Mogulskii A. A., “Svoistva funktsionala ot traektorii, voznikayuschego pri analize veroyatnostei bolshikh uklonenii sluchainykh bluzhdanii”, Cib. matem. zhurn., 52:4 (2011), 777–795 | Zbl
[16] Borovkov A. A., Mogulskii A. A., “Eksponentsialnye neravenstva chebyshëvskogo tipa dlya summ sluchainykh vektorov i dlya traektorii sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 56:1 (1976), 3–29 | DOI
[17] Pukhalskii A. A., “K teorii bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 38:3 (1993), 553–562 | Zbl
[18] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 2009, 652 pp.