@article{TVP_2013_58_4_a0,
author = {V. I. Afanasyev},
title = {Conditional limit theorem for maximum of random walk in a random environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {625--647},
year = {2013},
volume = {58},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a0/}
}
V. I. Afanasyev. Conditional limit theorem for maximum of random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 4, pp. 625-647. http://geodesic.mathdoc.fr/item/TVP_2013_58_4_a0/
[1] Ritter G. A., Random walk in a random environment, critical case, A thesis, Cornell Univ., Cornell, 1976, 73 pp.
[2] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio Math., 30 (1975), 145–168 | Zbl
[3] Afanasev V. I., “O vremeni dostizheniya vysokogo urovnya sluchainym bluzhdaniem v sluchainoi srede”, Teoriya veroyatn. i ee primen., 57:4 (2012), 625–648 | DOI
[4] Doney R. A., “Conditional limit theorems for asymptotically stable random walks”, Z. Wahrscheinlichkeitstheor. verw. Geb., 70 (1985), 351–360 | DOI | Zbl
[5] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | Zbl
[6] Geiger J., Kersting G., “The survival probability of a critical branching process in a random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | DOI | Zbl
[7] Bertoin J., Pitman J., “Path transformations connecting Brownian bridge, excursion and meander”, Bull. Sci. Math., 118:2 (1994), 147–166 | Zbl
[8] Afanasev V. I., “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matem., 11:2 (1999), 86–102 | DOI | Zbl
[9] Afanasev V. I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskret. matem., 11:4 (1999), 33–47 | DOI