@article{TVP_2013_58_3_a8,
author = {B. S. Darhovsky},
title = {Change-point detection in random sequence under minimal prior information},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {585--590},
year = {2013},
volume = {58},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a8/}
}
B. S. Darhovsky. Change-point detection in random sequence under minimal prior information. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 585-590. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a8/
[1] Shiryaev A. N., “O stokhasticheskikh modelyakh i optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 53:3 (2008), 417–436 | DOI | MR
[2] Shiryaev A. N., “Quickest detection problems: fifty years later”, Sequential Anal., 29:4 (2010), 345–385 | DOI | MR | Zbl
[3] Peligrad M., “Invariance principles for mixing sequences of random variables”, Ann. Probab., 10:4 (1982), 968–981 | DOI | MR | Zbl
[4] Brodsky B., Darkhovsky B., “Minimax methods for multihypothesis sequential testing and change-point detection problems”, Sequential Anal., 27:2 (2008), 141–173 | DOI | MR | Zbl
[5] Darkhovsky B., “Change-point problem for high-order Markov chain”, Sequential Anal., 30:1 (2011), 41–51 | DOI | MR | Zbl
[6] Yashchin E., “On a unified approach to the analysis of two-sided cumulative sum control schemes with headstarts”, Adv. in Appl. Probab., 17:3 (1985), 562–593 | DOI | MR | Zbl
[7] Dragalin V. P., “The design and analysis of 2-CUSUM procedure”, Comm. Statist. Simulation Comput., 26:1 (1997), 67–81 | DOI | MR | Zbl
[8] Hadjiliadis O., Moustakides G. V., “Optimal and asymptotically optimal CUSUM rules for change point detection in the Brownian motion model with multiple alternatives”, Teoriya veroyatn. i ee primen., 50:1 (2005), 131–144 | DOI | MR
[9] Hadjiliadis O., Poor H. V., “On the best 2-CUSUM stopping rule for quiskest detection of two-sided alternatives in a Brownian motion model”, Teoriya veroyatn. i ee primen., 53:3 (2008), 610–622 | DOI | MR
[10] Brodsky B. E., Darkhovsky B. S., Non-Parametric Statistical Diagnosis: Problems and Methods, Kluwer, Dordrecht, 2000, 452 pp. | MR | Zbl