Bernstein type’s concentration inequalities for symmetric Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 521-549 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_3_a5,
     author = {F. Gao and A. Guillin and L. Wu},
     title = {Bernstein type{\textquoteright}s concentration inequalities for symmetric {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {521--549},
     year = {2013},
     volume = {58},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a5/}
}
TY  - JOUR
AU  - F. Gao
AU  - A. Guillin
AU  - L. Wu
TI  - Bernstein type’s concentration inequalities for symmetric Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 521
EP  - 549
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a5/
LA  - en
ID  - TVP_2013_58_3_a5
ER  - 
%0 Journal Article
%A F. Gao
%A A. Guillin
%A L. Wu
%T Bernstein type’s concentration inequalities for symmetric Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 521-549
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a5/
%G en
%F TVP_2013_58_3_a5
F. Gao; A. Guillin; L. Wu. Bernstein type’s concentration inequalities for symmetric Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 521-549. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a5/

[1] Adamczak R., “A tail probability for suprema of unbounded empirical processes with applications to Markov chains”, Electron. J. Probab., 13 (2008), 1000–1034 | DOI | MR | Zbl

[2] Ané C. et al., Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, 10, Société Mathématique de France, Paris, 2000 | MR | Zbl

[3] Bakry D., “L'hypercontractivité et son utilisation en théorie des semigroupes”, Lecture Notes in Math., 1581, 1994, 1–114 | DOI | MR | Zbl

[4] Barthe F., Bakry D., Cattiaux P., Guillin A., “A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case”, Electron. Commun. Probab., 13 (2008), 60–66 | MR | Zbl

[5] Bakry D., Cattiaux P., Guillin A., “Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré”, J. Funct. Anal., 254:3 (2008), 727–759 | DOI | MR | Zbl

[6] Barthe F., Cattiaux P., Roberto C., “Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry”, Rev. Mat. Iberoam., 22:3 (2006), 993–1067 | DOI | MR | Zbl

[7] Baraud Y., A Bernstein-type inequality for suprema of random processes with an application to statistics, arXiv: 0904.3295

[8] Bertail P., Clémençon S., Sharp bounds for the tails of functionals of Markov chains, Prépublication Equippe MODAL'X, No 2008-21, Université Paris Ouest

[9] Bobkov S. G., Gentil I., Ledoux M., “Hypercontractivity of Hamilton–Jacobi equations”, J. Math. Pures Appl., 80:7 (2001), 669–696 | MR | Zbl

[10] Bobkov S. G., Götze F., “Exponential integrability and transportation cost related to logarithmic Sobolev inequalities”, J. Funct. Anal., 163 (1999), 1–28 | DOI | MR | Zbl

[11] Bobkov S. G., Ledoux M., “Weighted Poincaré-type inequalities for Cauchy and other convex measures”, Ann. Probab., 37 (2009), 403–427 | DOI | MR | Zbl

[12] Bolley F., Villani C., “Weighted Csiszár–Kullback–Pinsker inequalities and applications to transportation inequalities”, Ann. Fac. Sci. Toulouse, 14 (2005), 331–352 | DOI | MR | Zbl

[13] Cattiaux P., Gozlan N., Guillin A., Roberto C., “Functional inequalities for heavy tails distributions and application to isoperimetry”, Electronic J. Probab., 15 (2010), 346–385 | DOI | MR | Zbl

[14] Cattiaux P., Guillin A., “On quadratic transportation cost inequalities”, J. Math. Pures Appl. (9), 86:4 (2006), 341–361 | MR

[15] Cattiaux P., Guillin A., “Deviation bounds for additive functionals of Markov processes”, ESAIM Probab. Statist., 12 (2008), 12–29 (electronic) | DOI | MR | Zbl

[16] Cattiaux P., Guillin A., Wu L., Wang F. Y., “Lyapunov conditions for super Poincaré inequalities”, J. Funct. Anal., 256:6 (2009), 1821–1841 | DOI | MR | Zbl

[17] Cattiaux P., Guillin A., Wu L., “A note on Talagrand transportation inequality and logarithmic Sobolev inequality”, Probab. Theory Related Fields, 148:1–2 (2010), 285–304 | DOI | MR | Zbl

[18] Cattiaux P., Guillin A., Wu L., “Some remarks on weighted logarithmic Sobolev inequality”, Indiana Univ. Math. J., 60:6 (2011), 1885–1904 | DOI | MR | Zbl

[19] Chen M. F., Eigenvalues, Inequalities, and Ergodic Theory, Springer-Verlag, London, 2005, 228 pp. | MR

[20] Djellout H., Guillin A., Wu L., “Transportation cost-information inequalities for random dynamical systems and diffusions”, Ann. Probab., 32:3B (2004), 2702–2732 | MR | Zbl

[21] Djellout H., Wu L., “Lipschitzian norm estimate of one-dimensional Poisson equations and applications”, Ann. Inst. H. Poincaré Probab. Stat., 47:2 (2011), 450–462 | DOI | MR

[22] Donsker M. D., Varadhan S. R. S., “Asymptotic evaluations of certain {M}arkov process expectations for large time, I”, Comm. Pure Appl. Math., 28 (1975), 1–47 | DOI | MR | Zbl

[23] Donsker M. D., Varadhan S. R. S., “Asymptotic evaluations of certain Markov process expectations for large time, III”, Comm. Pure Appl. Math., 29 (1976), 389–461 | DOI | MR | Zbl

[24] Donsker M. D., Varadhan S. R. S., “Asymptotic evaluations of certain {M}arkov process expectations for large time, IV”, Comm. Pure Appl. Math., 36 (1983), 183–212 | DOI | MR | Zbl

[25] Douc R., Fort G., Guillin A., “Subgeometric rates of convergence of $f$-ergodic strong Markov processes”, Stochastic Process. Appl., 119:3 (2009), 897–923 | DOI | MR | Zbl

[26] Down D., Meyn S. P., Tweedie R. L., “Exponential and uniform ergodicity of Markov processes”, Ann. Probab., 23:4 (1995), 1671–1691 | DOI | MR | Zbl

[27] Glynn P. W., Meyn S. P., “A Lyapunov bound for solutions of the Poisson equation”, Ann. Probab., 24:2 (1996), 916–931 | DOI | MR | Zbl

[28] Gozlan N., Léonard C., “A large deviation approach to some transportation cost inequalities”, Probab. Theory Related Fields, 139:1–2 (2007), 235–283 | DOI | MR | Zbl

[29] Guillin A., “Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging”, Stochastic Process. Appl., 92:2 (2001), 287–313 | DOI | MR | Zbl

[30] Guillin A., Léonard Ch., Wu L., Yao N., “Transport-information inequalities for Markov processes”, Probab. Theory Related Fields, 144 (2009), 669–695 | DOI | MR | Zbl

[31] Guillin A., Léonard Ch., Wu L., Wang F. Y., Transportation-information inequalities for Markov processes. II: Relations with other functional inequalities, arXiv: 0902.2101

[32] Guillin A., Joulin A., Léonard Ch., Wu L., Transport-information inequalities for Markov processes. III: Jumps processes case, Preprint, 2008

[33] Kipnis C., Varadhan S. R. S., “Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions”, Comm. Math. Phys., 104 (1986), 1–19 | DOI | MR | Zbl

[34] Kontoyiannis I., Meyn S. P., “Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes”, Electron. J. Probab., 10:3 (2005), 61–123 | MR | Zbl

[35] Ledoux M., The Concentration of Measure Phenomenon, Amer. Math. Soc., Providence, RI, 2001, 181 pp. | MR | Zbl

[36] Lezaud P., “Chernoff and Berry–Esséen inequalities for Markov processes”, ESAIM Probab. Statist., 5 (2001), 183–201 (electronic) | DOI | MR | Zbl

[37] Liu W., Ma Y., “Spectral gap and convex concentration inequalities for birth-death processes”, Ann. Inst. H. Poincaré, 45:1 (2009), 58–69 | DOI | MR | Zbl

[38] Marton K., “Bounding $\overline{d}$-distance by informational divergence: a way to prove measure concentration”, Ann. Probab., 24 (1996), 857–866 | DOI | MR | Zbl

[39] Marton K., “A measure concentration inequality for contracting Markov chains”, Geom. Funct. Anal., 6 (1997), 556–571 | DOI | MR

[40] Massart P., Concentration inequalities and model selection, Lecture Notes in Math., 1896, 2007, 337 pp. | MR | Zbl

[41] Merlevède F., Peligrad M., Rio E., “A Bernstein type inequality and moderate deviations for weakly dependent sequences”, Probab. Theory Related Fields, 151:3–4 (2011), 435–474 | DOI | MR | Zbl

[42] Merlevède F., Peligrad M., Rio E., “Bernstein inequality and moderate deviations under strong mixing conditions”, High Dimensional Probability V: the Luminy volume, Inst. Math. Statist., Beachwood, 2009, 273–292 | DOI | MR | Zbl

[43] Meyn S. P., Tweedie R. L., Markov Chains and Stochastic Stability, Springer-Verlag, London, 1993, 548 pp. | MR | Zbl

[44] Otto F., Villani C., “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173 (2000), 361–400 | DOI | MR | Zbl

[45] Rao M. M., Ren Z. D., Theory of Orlicz Spaces, Marcel Dekker, New York, 1991, 449 pp. | MR | Zbl

[46] Rio E., Théorie asymptotique des processus aléatoires faiblement dépendentes, Springer, Berlin, 2000, 169 pp. | MR

[47] Saloff-Coste L., Aspects of Sobolev-Type Inequalities, Cambridge Univ. Press, Cambridge, 2002, 190 pp. | MR | Zbl

[48] Talagrand M., “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6 (1996), 587–600 | DOI | MR | Zbl

[49] Villani C., Optimal Transport, Old and New, Springer-Verlag, Berlin, 2009, 973 pp. | MR

[50] Villani C., Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2003, 370 pp. | MR | Zbl

[51] Wang F. Y., Functional Inequalities, Markov Semigroup and Spectral Theory, Chinese Sciences Press, Beijing–New York, 2005 | MR

[52] Wu L. M., “Moderate deviations of dependent random variables related to CLT”, Ann. Probab., 23 (1995), 420–445 | DOI | MR

[53] Wu L., “A deviation inequality for non-reversible Markov processes”, Ann. Inst. H. Poincaré, 36 (2000), 435–445 | DOI | MR | Zbl

[54] Wu L., “Uniformly integrable operators and large deviations for Markov processes”, J. Funct. Anal., 172 (2000), 301–376 | DOI | MR | Zbl

[55] Wu L., “A new modified logarithmic Sobolev inequality for Poisson point processes and several applications”, Probab. Theory Related Fields, 118 (2000), 427–438 | DOI | MR | Zbl

[56] Wu L., “Large and moderate deviations for stochastic damping Hamiltonian systems”, Stochastic Process. Appl., 91 (2001), 205–238 | DOI | MR | Zbl

[57] Wu L., “Essential spectral radius for Markov semigroups. I: Discrete time case”, Probab. Theory Related Fields, 128 (2004), 255–321 | DOI | MR | Zbl

[58] Wu L., “Gradient estimates of Poisson equations on Riemannian manifolds and applications”, J. Funct. Anal., 257 (2009), 4015–4033 | DOI | MR | Zbl