A note on one-dimensional stochastic differential equations with generalized drift
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 506-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_3_a4,
     author = {S. Blei and H.-J. Engelbert},
     title = {A note on one-dimensional stochastic differential equations with generalized drift},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {506--520},
     year = {2013},
     volume = {58},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/}
}
TY  - JOUR
AU  - S. Blei
AU  - H.-J. Engelbert
TI  - A note on one-dimensional stochastic differential equations with generalized drift
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 506
EP  - 520
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/
LA  - en
ID  - TVP_2013_58_3_a4
ER  - 
%0 Journal Article
%A S. Blei
%A H.-J. Engelbert
%T A note on one-dimensional stochastic differential equations with generalized drift
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 506-520
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/
%G en
%F TVP_2013_58_3_a4
S. Blei; H.-J. Engelbert. A note on one-dimensional stochastic differential equations with generalized drift. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 506-520. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/

[1] Bass R. F., Chen Z.-Q., “One-dimensional stochastic defferential equations with singular and degenerate coefficients”, Sankhyā, 67:1 (2005), 19–45 | MR | Zbl

[2] Blei S., “On symmetric and skew Bessel processes”, Stochastic Process. Appl., 122:9 (2012), 3262–3287 | DOI | MR | Zbl

[3] Chitashvili R., “On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion”, Proc. A. Razmadze Math. Inst., 115 (1997), 17–31 | MR | Zbl

[4] Engelbert H. J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Lecture Notes in Control and Inform. Sci., 69 (1985), 143–155 | DOI | MR | Zbl

[5] Engelbert H. J., Schmidt W., “Strong Markov continuous local martingales and solutions of the one-dimensional stochastic differential equations, III”, Math. Nachr., 151 (1991), 149–197 | DOI | MR | Zbl

[6] Harrison J. M., Shepp L. A., “On skew Brownian motion”, Ann. Probab., 9:2 (1981), 309–313 | DOI | MR | Zbl

[7] Karatzas I., Shiryaev A. N., Shkolnikov M., “On the one-sided Tanaka equation, with drift”, Electron Commun. Probab., 16 (2011), 664–677 | DOI | MR | Zbl

[8] Le Gall J.-F., “Applications du temps local aux équations différentielles stochastiques unidimensionnelles”, Lecture Notes in Math., 986, 1983, 15–31 | DOI | MR | Zbl

[9] Le Gall J.-F., “One-dimensional stochastic differential equations involving the local times of the unknown process”, Lecture Notes in Math., 1095, 1984, 51–82 | DOI | MR | Zbl

[10] Portenko N. I., Obobschennye diffuzionnye protsessy, Naukova dumka, Kiev, 1982, 208 pp.

[11] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999, 602 pp. | DOI | MR | Zbl

[12] Schmidt W., “On stochastic differential equations with reflecting barries”, Math. Nachr., 142 (1989), 135–148 | DOI | MR | Zbl

[13] Stroock D. W., Yor M., “Some remarkable martingales”, Lecture Notes in Math., 850, 1981, 590–603 | DOI | MR | Zbl