@article{TVP_2013_58_3_a4,
author = {S. Blei and H.-J. Engelbert},
title = {A note on one-dimensional stochastic differential equations with generalized drift},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {506--520},
year = {2013},
volume = {58},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/}
}
TY - JOUR AU - S. Blei AU - H.-J. Engelbert TI - A note on one-dimensional stochastic differential equations with generalized drift JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2013 SP - 506 EP - 520 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/ LA - en ID - TVP_2013_58_3_a4 ER -
S. Blei; H.-J. Engelbert. A note on one-dimensional stochastic differential equations with generalized drift. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 506-520. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a4/
[1] Bass R. F., Chen Z.-Q., “One-dimensional stochastic defferential equations with singular and degenerate coefficients”, Sankhyā, 67:1 (2005), 19–45 | MR | Zbl
[2] Blei S., “On symmetric and skew Bessel processes”, Stochastic Process. Appl., 122:9 (2012), 3262–3287 | DOI | MR | Zbl
[3] Chitashvili R., “On the nonexistence of a strong solution in the boundary problem for a sticky Brownian motion”, Proc. A. Razmadze Math. Inst., 115 (1997), 17–31 | MR | Zbl
[4] Engelbert H. J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Lecture Notes in Control and Inform. Sci., 69 (1985), 143–155 | DOI | MR | Zbl
[5] Engelbert H. J., Schmidt W., “Strong Markov continuous local martingales and solutions of the one-dimensional stochastic differential equations, III”, Math. Nachr., 151 (1991), 149–197 | DOI | MR | Zbl
[6] Harrison J. M., Shepp L. A., “On skew Brownian motion”, Ann. Probab., 9:2 (1981), 309–313 | DOI | MR | Zbl
[7] Karatzas I., Shiryaev A. N., Shkolnikov M., “On the one-sided Tanaka equation, with drift”, Electron Commun. Probab., 16 (2011), 664–677 | DOI | MR | Zbl
[8] Le Gall J.-F., “Applications du temps local aux équations différentielles stochastiques unidimensionnelles”, Lecture Notes in Math., 986, 1983, 15–31 | DOI | MR | Zbl
[9] Le Gall J.-F., “One-dimensional stochastic differential equations involving the local times of the unknown process”, Lecture Notes in Math., 1095, 1984, 51–82 | DOI | MR | Zbl
[10] Portenko N. I., Obobschennye diffuzionnye protsessy, Naukova dumka, Kiev, 1982, 208 pp.
[11] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999, 602 pp. | DOI | MR | Zbl
[12] Schmidt W., “On stochastic differential equations with reflecting barries”, Math. Nachr., 142 (1989), 135–148 | DOI | MR | Zbl
[13] Stroock D. W., Yor M., “Some remarkable martingales”, Lecture Notes in Math., 850, 1981, 590–603 | DOI | MR | Zbl