Averaging the local characteristics brings a semimartingale with independent increments closer to Lévy processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 486-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_3_a3,
     author = {S. A. Khihol},
     title = {Averaging the local characteristics brings a semimartingale with independent increments closer to {L\'evy} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {486--505},
     year = {2013},
     volume = {58},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a3/}
}
TY  - JOUR
AU  - S. A. Khihol
TI  - Averaging the local characteristics brings a semimartingale with independent increments closer to Lévy processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 486
EP  - 505
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a3/
LA  - ru
ID  - TVP_2013_58_3_a3
ER  - 
%0 Journal Article
%A S. A. Khihol
%T Averaging the local characteristics brings a semimartingale with independent increments closer to Lévy processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 486-505
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a3/
%G ru
%F TVP_2013_58_3_a3
S. A. Khihol. Averaging the local characteristics brings a semimartingale with independent increments closer to Lévy processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 486-505. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a3/

[1] Guschin A. A., Mordetski E., “Granitsy tsen optsionov dlya semimartingalnykh modelei rynka”, Tr. MIAN, 237, 2002, 80–122 | MR | Zbl

[2] Khikhol S. A., “Formula dlya obobschennogo protsessa plotnosti raspredelenii semimartingalov s nezavisimymi prirascheniyami”, Teoriya veroyatn. i ee primen., 54:4 (2009), 716–729 | DOI

[3] Shiryaev A. N., Chernyi A. S., “Vektornyi stokhasticheskii integral i fundamentalnye teoremy teorii arbitrazha”, Tr. MIAN, 237, 2002, 12–56 | MR | Zbl

[4] Cawston S., Vostrikova L., An $f$-divergence approach for optimal portfolios in exponential Lévy models, 12/2010, arXiv: 1012.3136

[5] Chan T., “Pricing contingent claims on stocks driven by Lévy processes”, Ann. Appl. Probab., 9:2 (1999), 504–528 | DOI | MR | Zbl

[6] Coquet F., Jacod J., “Convergence des surmartingales. Application aux vraisemblances partielles”, Lecture Notes in Math., 24, 1990, 282–299 | DOI | MR

[7] Eberlein E., Jacod J., “On the range of options prices”, Finance Stoch., 1:2 (1997), 131–140 | DOI | MR | Zbl

[8] Esche F., Schweizer M., “Minimal entropy preserves the Lévy property: how and why”, Stochastic Process. Appl., 115:2 (2005), 299–327 | DOI | MR | Zbl

[9] Hubalek F., Sgarra C., “Esscher transforms and the minimal entropy martingale measure for exponential Lévy models”, Quant. Finance, 6:2 (2006), 125–145 | DOI | MR | Zbl

[10] Hurd T. R., “A note on log-optimal portfolios in exponential Lévy markets”, Statist. Decisions, 22:3 (2004), 225–233 | DOI | MR | Zbl

[11] Jacod J., Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Math., 714, 1979, 539 pp. | MR | Zbl

[12] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., 228, Springer-Verlag, Berlin, 2003, 661 pp. | DOI | MR

[13] Jakubenas P., “On option pricing in certain incomplete markets”, Tr. MIAN, 237, 2002, 123–142 | MR | Zbl

[14] Jeanblanc M., Klöppel S., Miyahara Y., “Minimal $f^{q}$-martingale measures of exponential Lévy processes”, Ann. Appl. Probab., 17:5–6 (2007), 1615–1638 | DOI | MR | Zbl

[15] Kallsen J., “Optimal portfolios for exponential Lévy processes”, Math. Methods Oper. Res., 51:3 (2000), 357–374 | DOI | MR

[16] Kramkov D., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950 | DOI | MR | Zbl

[17] Liese F., Miescke K.-J., Statistical Decision Theory, Springer, New York, 2008 | MR | Zbl

[18] Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig, 1987, 224 pp. | MR | Zbl

[19] Mémin J., Shiryayev A. N., “Distance de Hellinger–Kakutani des lois correspondant à deux processus à accroissements indépendants”, Z. Wahrscheinlichkeitstheor. verw. Geb., 70:1 (1985), 67–89 | DOI | MR | Zbl

[20] Schachermayer W., “Optimal investment in incomplete markets when wealth may become negative”, Ann. Appl. Probab., 11:3 (2001), 694–734 | DOI | MR | Zbl

[21] Shiryaev A. N., Spokoiny V. G., Statistical Experiments and Decisions. Asymptotic Theory, World Scientific Publishing Co., River Edge, 2000, 281 pp. | MR | Zbl

[22] Strasser H., Mathematical Theory of Statistics, de Gruyter, Berlin, 1985, 492 pp. | MR | Zbl

[23] Torgersen E., Comparison of Statistical Experiments, Cambridge Univ. Press, Cambridge, 1991, 675 pp. | MR | Zbl