@article{TVP_2013_58_3_a12,
author = {S. Jaimungal and A. Kreinin and A. Valov},
title = {The generalized {Shiryaev} problem and {Skorokhod} embedding},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {614--623},
year = {2013},
volume = {58},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a12/}
}
S. Jaimungal; A. Kreinin; A. Valov. The generalized Shiryaev problem and Skorokhod embedding. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 614-623. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a12/
[1] Alili L., Patie P., “On the first crossing times of a Brownian motion and a family of continuous curves”, C. R. Math. Acad. Sci. Paris, 340:3 (2005), 225–228 | DOI | MR | Zbl
[2] Anulova S. V., “O markovskikh momentakh s zadannym raspredeleniem dlya vinerovskogo protsessa”, Teoriya veroyatn. i ee primen., 25:2 (1980), 366–369 | MR | Zbl
[3] Avellaneda M., Zhu J., “Distance to default”, Risk, 14:12 (2001), 125–129
[4] Breiman L., “First exit times from a square root boundary”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, part 2 (Berkeley, 1965/66), v. 1, Univ. California Press, Berkeley, 1967, 9–16 | MR | Zbl
[5] Cheng L., Chen X., Chadam J., Saunders D., “Analysis of an inverse first passage problem from risk management”, SIAM J. Math. Anal., 38:3 (2006), 845–873 | DOI | MR | Zbl
[6] Dudley R. M., Gutmann S., “Stopping times with given laws”, Lecture Notes in Math., 581, 1977, 51–58 | DOI | MR | Zbl
[7] Durbin J., “Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test”, J. Appl. Probab., 8:3 (1971), 431–453 | DOI | MR | Zbl
[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Nauka, M., 1984, 752 pp. | MR
[9] Hobson D. G., Williams D., Wood A. T. A., “Taylor expansions of curve-crossing probabilities”, Bernoulli, 5:5 (1999), 779–795 | DOI | MR | Zbl
[10] Hull J., White A., “Valuing credit default swaps II: modelling default correlations”, J. Derivatives, 8:3 (2001), 29–40 | DOI
[11] Iscoe I., Kreinin A., Default boundary problem, Technical report, Algorithmics Inc., 2009
[12] Iscoe I., Kreinin A., Rosen D., “Integrated market and credit risk portfolio model”, Algorithmics Research Quarterly, 2:3 (1999), 21–38
[13] Jackson K., Kreinin A., Zhang W., “Randomization in the first hitting time problem”, Statist. Probab. Lett., 79:23 (2009), 2422–2428 | DOI | MR | Zbl
[14] Jaimungal S., Kreinin A., Valov A., Integral equations and the first passage time of Brownian motions, arXiv: 0902.2569
[15] Jaimungal S., Kreinin A., Valov A., Randomized first passage times, arXiv: 0911.4165v1
[16] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 2005, 473 pp. | MR
[17] Khintchine A. Y., Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1993, 77 pp.
[18] Lerche H., Boundary Crossing of Brownian Motion, Lecture Notes in Statist., 40, Springer-Verlag, Berlin, 1986, 142 pp. | DOI | MR | Zbl
[19] Novikov A. A., “Martingalnyi podkhod v zadachakh o vremeni pervogo peresecheniya nelineinykh granits”, Tr. MIAN SSSR, 158, 1981, 130–152 | MR | Zbl
[20] Obloj J., The Skorokhod proble and its offspring, Preprint No 866, Laboratoire de Probabilités et Modèles Aléatoires Univ. Paris VI VII, Paris, 2004 | MR
[21] Peskir G., “On integral equations arising in the first-passage problem for Brownian motion”, J. Integral Equations Appl., 14:4 (2002), 397–423 | DOI | MR | Zbl
[22] Peskir G., Shiryaev A., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006, 500 pp. | MR | Zbl
[23] Salminen P., “On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary”, Adv. Appl. Probab., 20:2 (1988), 411–426 | DOI | MR | Zbl
[24] Schmidt T., Novikov A., “A structural model with unobserved default boundary”, Appl. Math. Finance, 15:2 (2008), 183–203 | DOI | MR | Zbl
[25] Shepp L., “A first passage problem for the Wiener process”, Ann. Math. Statist., 38:6 (1967), 1912–1914 | DOI | MR | Zbl
[26] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kiev. un-ta, Kiev, 1961, 216 pp.