The generalized Shiryaev problem and Skorokhod embedding
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 614-623 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_3_a12,
     author = {S. Jaimungal and A. Kreinin and A. Valov},
     title = {The generalized {Shiryaev} problem and {Skorokhod} embedding},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {614--623},
     year = {2013},
     volume = {58},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a12/}
}
TY  - JOUR
AU  - S. Jaimungal
AU  - A. Kreinin
AU  - A. Valov
TI  - The generalized Shiryaev problem and Skorokhod embedding
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 614
EP  - 623
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a12/
LA  - en
ID  - TVP_2013_58_3_a12
ER  - 
%0 Journal Article
%A S. Jaimungal
%A A. Kreinin
%A A. Valov
%T The generalized Shiryaev problem and Skorokhod embedding
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 614-623
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a12/
%G en
%F TVP_2013_58_3_a12
S. Jaimungal; A. Kreinin; A. Valov. The generalized Shiryaev problem and Skorokhod embedding. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 614-623. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a12/

[1] Alili L., Patie P., “On the first crossing times of a Brownian motion and a family of continuous curves”, C. R. Math. Acad. Sci. Paris, 340:3 (2005), 225–228 | DOI | MR | Zbl

[2] Anulova S. V., “O markovskikh momentakh s zadannym raspredeleniem dlya vinerovskogo protsessa”, Teoriya veroyatn. i ee primen., 25:2 (1980), 366–369 | MR | Zbl

[3] Avellaneda M., Zhu J., “Distance to default”, Risk, 14:12 (2001), 125–129

[4] Breiman L., “First exit times from a square root boundary”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, part 2 (Berkeley, 1965/66), v. 1, Univ. California Press, Berkeley, 1967, 9–16 | MR | Zbl

[5] Cheng L., Chen X., Chadam J., Saunders D., “Analysis of an inverse first passage problem from risk management”, SIAM J. Math. Anal., 38:3 (2006), 845–873 | DOI | MR | Zbl

[6] Dudley R. M., Gutmann S., “Stopping times with given laws”, Lecture Notes in Math., 581, 1977, 51–58 | DOI | MR | Zbl

[7] Durbin J., “Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test”, J. Appl. Probab., 8:3 (1971), 431–453 | DOI | MR | Zbl

[8] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Nauka, M., 1984, 752 pp. | MR

[9] Hobson D. G., Williams D., Wood A. T. A., “Taylor expansions of curve-crossing probabilities”, Bernoulli, 5:5 (1999), 779–795 | DOI | MR | Zbl

[10] Hull J., White A., “Valuing credit default swaps II: modelling default correlations”, J. Derivatives, 8:3 (2001), 29–40 | DOI

[11] Iscoe I., Kreinin A., Default boundary problem, Technical report, Algorithmics Inc., 2009

[12] Iscoe I., Kreinin A., Rosen D., “Integrated market and credit risk portfolio model”, Algorithmics Research Quarterly, 2:3 (1999), 21–38

[13] Jackson K., Kreinin A., Zhang W., “Randomization in the first hitting time problem”, Statist. Probab. Lett., 79:23 (2009), 2422–2428 | DOI | MR | Zbl

[14] Jaimungal S., Kreinin A., Valov A., Integral equations and the first passage time of Brownian motions, arXiv: 0902.2569

[15] Jaimungal S., Kreinin A., Valov A., Randomized first passage times, arXiv: 0911.4165v1

[16] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 2005, 473 pp. | MR

[17] Khintchine A. Y., Asymptotische Gesetze der Wahrscheinlichkeitsrechnung, Springer, Berlin, 1993, 77 pp.

[18] Lerche H., Boundary Crossing of Brownian Motion, Lecture Notes in Statist., 40, Springer-Verlag, Berlin, 1986, 142 pp. | DOI | MR | Zbl

[19] Novikov A. A., “Martingalnyi podkhod v zadachakh o vremeni pervogo peresecheniya nelineinykh granits”, Tr. MIAN SSSR, 158, 1981, 130–152 | MR | Zbl

[20] Obloj J., The Skorokhod proble and its offspring, Preprint No 866, Laboratoire de Probabilités et Modèles Aléatoires Univ. Paris VI VII, Paris, 2004 | MR

[21] Peskir G., “On integral equations arising in the first-passage problem for Brownian motion”, J. Integral Equations Appl., 14:4 (2002), 397–423 | DOI | MR | Zbl

[22] Peskir G., Shiryaev A., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006, 500 pp. | MR | Zbl

[23] Salminen P., “On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary”, Adv. Appl. Probab., 20:2 (1988), 411–426 | DOI | MR | Zbl

[24] Schmidt T., Novikov A., “A structural model with unobserved default boundary”, Appl. Math. Finance, 15:2 (2008), 183–203 | DOI | MR | Zbl

[25] Shepp L., “A first passage problem for the Wiener process”, Ann. Math. Statist., 38:6 (1967), 1912–1914 | DOI | MR | Zbl

[26] Skorokhod A. V., Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kiev. un-ta, Kiev, 1961, 216 pp.