On asymptotic expansions for convolutions of distributions belonging to the domains of attraction of stable laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 608-614 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_3_a11,
     author = {A. V. Syulyukin},
     title = {On asymptotic expansions for convolutions of distributions belonging to the domains of attraction of stable laws},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {608--614},
     year = {2013},
     volume = {58},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a11/}
}
TY  - JOUR
AU  - A. V. Syulyukin
TI  - On asymptotic expansions for convolutions of distributions belonging to the domains of attraction of stable laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 608
EP  - 614
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a11/
LA  - ru
ID  - TVP_2013_58_3_a11
ER  - 
%0 Journal Article
%A A. V. Syulyukin
%T On asymptotic expansions for convolutions of distributions belonging to the domains of attraction of stable laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 608-614
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a11/
%G ru
%F TVP_2013_58_3_a11
A. V. Syulyukin. On asymptotic expansions for convolutions of distributions belonging to the domains of attraction of stable laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 608-614. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a11/

[1] Zolotarev V. M., “Analog asimptoticheskogo razlozheniya Edzhvorta–Kramera dlya sluchaya sblizheniya s ustoichivymi zakonami raspredeleniya”, Trudy VI Vsesoyuznogo soveschaniya po teorii veroyatnostei i matematicheskoi statistike, Gos. izd-vo polit. i nauch. lit. LitSSR, Vilnyus, 1962, 49–50 | Zbl

[2] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp.

[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[4] Osmolovskii I. Yu., “O nekotorykh svoistvakh mnogomernykh analogov mnogochlenov Chebyshëva–Ermita”, Teoriya veroyatn. i ee primen., 53:2 (2008), 373–378 | DOI

[5] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei, Nauka, M., 1967, 495 pp.

[6] Senatov V. V., “Ob odnom mnogomernom analoge razlozheniya Chebyshëva”, Teoriya veroyatn. i ee primen., 52:3 (2007), 603–610 | DOI

[7] Senatov V. V., Tsentralnaya predelnaya teorema: tochnost approksimatsii i asimptoticheskie razlozheniya, Librokom, M., 2009, 350 pp.

[8] Syulyukin A. V., “Ob asimptoticheskikh razlozheniyakh Bergstrëma–Chebyshëva”, Teoriya veroyatn. i ee primen., 54:1 (2009), 176–185 | DOI | Zbl

[9] Yaroslavtseva L. S., “Neklassicheskie otsenki tochnosti priblizheniya asimptoticheskimi razlozheniyami v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 53:2 (2008), 390–393 | DOI

[10] Kristof G., “Asimptoticheskie razlozheniya v sluchae ustoichivogo predelnogo zakona, I”, Litov. matem. sb., 21:2 (1981), 87–100 | MR | Zbl

[11] Christoph G., Wolf W., Convergence Theorems with a Stable Limit Law, Akademie Verlag, Berlin, 1992, 200 pp. | MR

[12] Mitalauskas A., Statulyavichus V., “Asimptoticheskoe razlozhenie v sluchae ustoichivogo approksimiruyuschego zakona”, Litov. matem. sb., 16:4 (1976), 149–166 | MR | Zbl