Estimation of the regression with a pulse noise by discrete time observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 454-471 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2013_58_3_a1,
     author = {V. V. Konev and S. M. Pergamenshchikov and E. A. Pchelintsev},
     title = {Estimation of the regression with a pulse noise by discrete time observations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {454--471},
     year = {2013},
     volume = {58},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a1/}
}
TY  - JOUR
AU  - V. V. Konev
AU  - S. M. Pergamenshchikov
AU  - E. A. Pchelintsev
TI  - Estimation of the regression with a pulse noise by discrete time observations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 454
EP  - 471
VL  - 58
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a1/
LA  - ru
ID  - TVP_2013_58_3_a1
ER  - 
%0 Journal Article
%A V. V. Konev
%A S. M. Pergamenshchikov
%A E. A. Pchelintsev
%T Estimation of the regression with a pulse noise by discrete time observations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 454-471
%V 58
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a1/
%G ru
%F TVP_2013_58_3_a1
V. V. Konev; S. M. Pergamenshchikov; E. A. Pchelintsev. Estimation of the regression with a pulse noise by discrete time observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 454-471. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a1/

[1] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp.

[2] James W., Stein C., “Estimation with quadratic loss”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. 1, Univ. of California, Berkeley, 1961, 361–379 | MR | Zbl

[3] Lehmann E. L., Casella G., Theory of Point Estimation, Springer, New York, 1998, 589 pp. | MR

[4] Zaks Sh., Teoriya statisticheskikh vyvodov, Mir, M., 1975, 776 pp.

[5] Fourdrinier D., Statistique Inférentielle, Dunod, Paris, 2002, 336 pp.

[6] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp.

[7] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy. Statist. Soc., Ser. B, 63:2 (2001), 167–241 | DOI | MR | Zbl

[8] Ibragimov I. A., Khasminskii R. Z., Asimptoticheskaya teoriya otsenivaniya, Nauka, M., 1979, 527 pp.

[9] Delong L., Klüppelberg C., “Optimal investment and consumption in a Black–Scholes market with Lévy-driven stochastic coefficients”, Ann. Appl. Probab., 18:3 (2008), 879–908 | DOI | MR | Zbl

[10] Stein C. M., “Estimation of the mean of a multivariate normal distribution”, Ann. Statist., 9:6 (1981), 1135–1151 | DOI | MR | Zbl

[11] Polyak B. T., Tsypkin Ya. Z., “Optimalnye metody otsenivaniya koeffitsientov avtoregressii pri nepolnoi informatsii”, Izv. AN SSSR, ser. Tekhn. kibernet., 1983, no. 1, 118–126

[12] Galtchouk L., Pergamenshchikov S. M., “Asymptotically efficient estimates for nonparametric regression models”, Statist. Probab. Lett., 76:8 (2006), 852–860 | DOI | MR | Zbl

[13] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986, 512 pp.