@article{TVP_2013_58_3_a0,
author = {N. V. Gribkova and R. Helmers},
title = {Second order approximations for slightly trimmed means},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {417--453},
year = {2013},
volume = {58},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a0/}
}
N. V. Gribkova; R. Helmers. Second order approximations for slightly trimmed means. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 3, pp. 417-453. http://geodesic.mathdoc.fr/item/TVP_2013_58_3_a0/
[1] Bentkus V., Götze F., Zitikis R., “Lower estimates of the convergence rate for $ U$-statistics”, Ann. Probab., 22:4 (1994), 1707–1714 | DOI | MR | Zbl
[2] Bentkus V., Jing B.-Y., Zhou W., “On normal approximations to $ U$-statistics”, Ann. Probab., 37:6 (2009), 2174–2199 | DOI | MR | Zbl
[3] Bentkus V., Götze F., van Zwet W. R., “An Edgeworth expansion for symmetric statistics”, Ann. Statist., 25:2 (1997), 851–896 | DOI | MR | Zbl
[4] Bickel P. J., Götze F., van Zwet W. R., “The Edgeworth expansion for $ U$-statistics of degree two”, Ann. Statist., 14 (1986), 1463–1484 | DOI | MR | Zbl
[5] Bingham N. M., Goldie C. M., Teugels J. L., Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, 491 pp. | MR | Zbl
[6] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera, II”, Teoriya veroyatn. i ee primen., 51:4 (2006), 641–673 | DOI | MR
[7] Chen L. H. Y., Shao Q. M., “Normal approximation for nonlinear statistics using a concentration inequality approach”, Bernoulli, 13:2 (2007), 581–599 | DOI | MR | Zbl
[8] Csörgő S., Haeusler E., Mason D. M., “The asymptotic distribution of trimmed sums”, Ann. Probab., 16:2 (1988), 672–699 | DOI | MR | Zbl
[9] Csörgő S., Megyesi Z., “Trimmed sums from the domain of geometric partial attraction of semistable laws”, State of the Art in Probability and Statistics, Festschrift for Willem R. van Zwet, IMS Lecture Notes Monogr. Ser., 36, eds. M. de Gunst, C. Klaassen, A. van der Vaart, Institute of Mathematical Statistics, Beachwood, 2001, 173–194 | MR
[10] Egorov V. A., Nevzorov V. B., “Nekotorye otsenki skorosti skhodimosti summ poryadkovykh statistik k normalnomu zakonu”, Zap. nauch. sem. LOMI, 41, 1974, 105–128 | MR | Zbl
[11] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp. | MR
[12] Friedrich K. O., “A Berry–Esseen bound for functions of independent random variables”, Ann. Statist., 17 (1989), 170–183 | DOI | MR | Zbl
[13] Gribkova N. V., “Ob analogakh neravenstva Berri–Esseena dlya urezannykh lineinykh kombinatsii poryadkovykh statistik”, Teoriya veroyatn. i ee primen., 38 (1993), 176–183 | MR
[14] Gribkova N. V., Helmers R., “The empirical Edgeworth expansion for a Studentized trimmed mean”, Math. Methods Statist., 15:1 (2006), 61–87 | MR
[15] Gribkova N. V., Helmers R., “On the Edgeworth expansion and the $ M$ out of $ N$ bootstrap accuracy for a Studentized trimmed mean”, Math. Methods Statist., 16:2 (2007), 142–176 | DOI | MR
[16] Gribkova N. V., Khelmers R., “O sostoyatelnosti $M\lll N$–butstrep-approksimatsii raspredelenii usechennogo srednego”, Teoriya veroyatn. i ee primen., 55:1 (2010), 3–18 | DOI | MR
[17] Gribkova N. V., Helmers R., “On a Bahadur–Kiefer representation of von Mises statistic type for intermediate sample quantiles”, Probab. Math. Statist., 32:2 (2012), 255–279 | MR | Zbl
[18] Griffin P. S., Pruitt W. E., “Asymptotic normality and subsequential limits of trimmed sums”, Ann. Probab., 17:3 (1989), 1186–1219 | DOI | MR | Zbl
[19] Helmers R., “On the Edgeworth expansion and the bootstrap approximation for a Studentized $ U$-statistic”, Ann. Statist., 19:1 (1991), 470–484 | DOI | MR | Zbl
[20] Helmers R., Jing B.-Y., Qin G., Zhou W., “Saddlepoint approximations to the trimmed mean”, Bernoulli, 10:3 (2004), 465–501 | DOI | MR | Zbl
[21] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58 (1963), 13–30 | DOI | MR | Zbl
[22] Kulik R., Haye M. O., “Trimmed sums of long range dependent moving averages”, Statist. Probab. Lett., 78:15 (2008), 2536–2542 | DOI | MR | Zbl
[23] Peng L., “Estimating the mean of a heavy tailed distribution”, Statist. Probab. Lett., 52:3 (2001), 255–264 | DOI | MR | Zbl
[24] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR
[25] Putter H., van Zwet W. R., “Empirical Edgeworth expansions for symmetric statistics”, Ann. Statist., 26:4 (1998), 1540–1569 | DOI | MR | Zbl
[26] Stigler S. M., “The asymptotic distribution of the trimmed mean”, Ann. Statist., 1:4 (1973), 472–477 | DOI | MR | Zbl
[27] van Zwet W. R., “A Berry–Esseen bound for symmetric statistics”, Z. Wahrscheinlichkeitstheor. verw. Geb., 66 (1984), 425–440 | DOI | MR | Zbl