A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 387-396
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An asymptotic behavior of increments of the renewal functions generated by the distributions with tails varying at $\pm\infty$ regularly with index $\beta\in(0,0.5]$ is investigated.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
increments of renewal function; infinite Mean; stable law on the real line; nonlattice distribution; regularly varying functions.
                    
                  
                
                
                @article{TVP_2013_58_2_a9,
     author = {V. A. Vatutin and V. A. Topchii},
     title = {A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {387--396},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/}
}
                      
                      
                    TY - JOUR AU - V. A. Vatutin AU - V. A. Topchii TI - A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$ JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2013 SP - 387 EP - 396 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/ LA - ru ID - TVP_2013_58_2_a9 ER -
V. A. Vatutin; V. A. Topchii. A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 387-396. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/
