A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 387-396

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic behavior of increments of the renewal functions generated by the distributions with tails varying at $\pm\infty$ regularly with index $\beta\in(0,0.5]$ is investigated.
Keywords: increments of renewal function; infinite Mean; stable law on the real line; nonlattice distribution; regularly varying functions.
@article{TVP_2013_58_2_a9,
     author = {V. A. Vatutin and V. A. Topchii},
     title = {A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {387--396},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchii
TI  - A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 387
EP  - 396
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/
LA  - ru
ID  - TVP_2013_58_2_a9
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchii
%T A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 387-396
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/
%G ru
%F TVP_2013_58_2_a9
V. A. Vatutin; V. A. Topchii. A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 387-396. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/