A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 387-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An asymptotic behavior of increments of the renewal functions generated by the distributions with tails varying at $\pm\infty$ regularly with index $\beta\in(0,0.5]$ is investigated.
Keywords: increments of renewal function; infinite Mean; stable law on the real line; nonlattice distribution; regularly varying functions.
@article{TVP_2013_58_2_a9,
     author = {V. A. Vatutin and V. A. Topchii},
     title = {A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {387--396},
     year = {2013},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. A. Topchii
TI  - A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 387
EP  - 396
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/
LA  - ru
ID  - TVP_2013_58_2_a9
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. A. Topchii
%T A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 387-396
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/
%G ru
%F TVP_2013_58_2_a9
V. A. Vatutin; V. A. Topchii. A key renewal theorem for heavy tail distributions with $\beta\in(0,0.5]$. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 387-396. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a9/

[1] Erickson K. B., “Strong renewal theorems with infinite mean”, Trans. Amer. Math. Society, 151 (1970), 263–291 | DOI | MR | Zbl

[2] Erickson K. B., “A renewal theorem for distributions on $\mathbb{R}^{1}$ without expectation”, Bull. Amer. Math. Soc., 77 (1971), 406–410 | DOI | MR | Zbl

[3] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, 494 pp. | MR | Zbl

[4] De Bruijn N. G., Erdös P., “On a recursion formula and some Tauberian theorems”, J. Res. Natl. Bur. Stand., 50 (1953), 161–164 | DOI | MR | Zbl

[5] Garsia A., Lamperti J., “A discrete renewal theorem with infinite mean”, Comment. Math. Helv., 37 (1963), 221–234 | DOI | MR | Zbl

[6] Doney R. A., “One-sided local large deviation and renewal theorems in the case of infinite mean”, Probab. Theory Related Fields, 107 (1997), 451–465 | DOI | MR | Zbl

[7] Parameswaran S., “Partition functions whose logarithms are slowly oscillating”, Trans. Amer. Math. Soc., 100 (1961), 217–240 | DOI | MR | Zbl

[8] Williamson J. A., “Random walks and Riesz kernels”, Pacific J. Math., 25 (1968), 393–415 | DOI | MR | Zbl

[9] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp.

[10] Stone C. J., “A local limit theorem for nonlattice multi-dimensional distribution functions”, Ann. Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl

[11] Topchii V., “Renewal measure density for distributions with regularly varying tails of order $\alpha\in(0, 1/2]$”, Lecture Notes in Statist., 197, 2010, 109–120 | DOI | MR

[12] Topchii V., “Proizvodnaya plotnosti vosstanovleniya s beskonechnym momentom pri $\alpha \in (0,1/2]$”, Sib. elektron. matem. izv., 7 (2010), 340–349 | MR

[13] Feller V., Vvedenie v teoriyu veroyatnoctei i ee prilozheniya, v. 2, Mir, M., 1984, 751 pp.

[14] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp.

[15] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[16] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Nauka, M., 1970, 800 pp.

[17] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.

[18] Anderson K. K., Athreya K. B., “A renewal theorem in the infinite mean case”, Ann. Probab., 15 (1987), 388–393 | DOI | MR | Zbl