Transformations of the simplest nonsymmetric random walks and some applications of the invariance principle
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 381-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive convenient formulas for the tail probabilities of the supnorm of the simplest nonsymmetric random walks defined on a finite time-interval. Using these formulas, we obtain a new representation for the distribution of the number of crossings of a canonical strip by the random walks. As a consequence of the above-mentioned results, we propose a new approach to calculation of the distributions of some boundary functionals of a Wiener process with drift.
Keywords: simplest random walk; Wiener process with drift; distribution of the number of crossings of a strip; invariance principle.
@article{TVP_2013_58_2_a8,
     author = {I. S. Borisov},
     title = {Transformations of the simplest nonsymmetric random walks and some applications of the invariance principle},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {381--387},
     year = {2013},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a8/}
}
TY  - JOUR
AU  - I. S. Borisov
TI  - Transformations of the simplest nonsymmetric random walks and some applications of the invariance principle
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 381
EP  - 387
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a8/
LA  - ru
ID  - TVP_2013_58_2_a8
ER  - 
%0 Journal Article
%A I. S. Borisov
%T Transformations of the simplest nonsymmetric random walks and some applications of the invariance principle
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 381-387
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a8/
%G ru
%F TVP_2013_58_2_a8
I. S. Borisov. Transformations of the simplest nonsymmetric random walks and some applications of the invariance principle. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 381-387. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a8/

[1] Borisov I. S., Nikitina N. N., “Raspredelenie chisla peresechenii polosy traektoriyami prosteishikh sluchainykh bluzhdanii i vinerovskogo protsessa so snosom”, Teoriya veroyatn. i ee primen., 56:1 (2011), 152–158 | DOI | MR

[2] Borisov I. S., “Zamechanie o raspredelenii chisla peresechenii polosy sluchainym bluzhdaniem”, Teoriya veroyatn. i ee primen., 53:2 (2008), 345–349 | DOI

[3] Lotov V. I., Orlova N. G., “O chisle peresechenii polosy traektoriyami sluchainogo bluzhdaniya”, Matem. sb., 194:6 (2003), 135–146 | DOI | MR | Zbl

[4] Androshchuk T. O., “Distribution of the number of intersections of a segment by a random walk and the Brownian motion”, Theory Stoch. Process., 7:3–4 (2001), 3–7 | MR | Zbl

[5] Gnedenko B. V., Kurs teorii veroyatnostei, Fizmatgiz, M., 1961, 406 pp.

[6] Borovkov A. A., Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Nauka, M., 1980, 381 pp.

[7] Borodin A. N., Salminen P., Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, SPb., 2000, 639 pp.