@article{TVP_2013_58_2_a7,
author = {A. Basse-O'Connor and S.-E. Graversen and J. Pedersen},
title = {Stochastic integration on the real line},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {355--380},
year = {2013},
volume = {58},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a7/}
}
A. Basse-O'Connor; S.-E. Graversen; J. Pedersen. Stochastic integration on the real line. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 355-380. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a7/
[1] Barndorff-Nielsen O. E., Schmiegel J., “Ambit processes: with applications to turbulence and tumour growth”, Stochastic Analysis and Applications, Abel Symp., v. 2, Springer, Berlin, 2007, 93–124 | DOI | MR | Zbl
[2] Barndorff-Nielsen O. E., Schmiegel J., “A stochastic differential equation framework for the timewise dynamics of turbulent velocities”, Teoriya veroyatn. i ee primen., 52:3 (2007), 541–561 | DOI | MR
[3] Barndorff-Nielsen O. E., Schmiegel J., “Brownian semistationary processes and volatility/intermittency”, Advanced Financial Modelling, Radon Ser. Comput. Appl. Math., 8, de Gruyter, Berlin, 2009, 1–25 | MR | Zbl
[4] Basse-O'Connor A., Graversen S.-E., Pedersen J., “Martingale-type processes indexed by the real line”, ALEA Lat. Am. J. Probab. Math. Statist., 7 (2010), 117–137 | MR
[5] Basse-O'Connor A., Graversen S.-E., Pedersen J., “Some classes of proper integrals and generalized {O}rnstein–{U}hlenbeck processes”, Lecture Notes in Math., 2046, 2012, 61–74 | DOI | MR
[6] Basse-O'Connor A., Graversen S.-E., Pedersen J., A unified approach to stochastic integration on the real line, Thiele Research Report No 2010-08 http://www.imf.au.dk/publication/publid/880
[7] Behme A., Lindner A., Maller R. A., “Stationary solutions of the stochastic differential equation $d{V}_t = {V}_{t-}\,d{U}_t + d{L}_t$ with {L}évy noise”, Stochastic Process. Appl., 121:1 (2011), 91–108 | DOI | MR | Zbl
[8] Bichteler K., “Measures with values in non-locally convex spaces”, Lecture Notes in Math., 541, 1976, 277–285 | DOI | MR | Zbl
[9] Bichteler K., “Stochastic integration and $ L\sp{p}$-theory of semimartingales”, Ann. Probab., 9:1 (1981), 49–89 | DOI | MR | Zbl
[10] Bichteler K., Jacod J., “Random measures and stochastic integration”, Lecture Notes in Control and Inform. Sci., 49, 1983, 1–18 | DOI | MR | Zbl
[11] Cherny A., Shiryaev A., “On stochastic integrals up to infinity and predictable criteria for integrability”, Lecture Notes in Math., 1857 (2005), 165–185 | MR | Zbl
[12] Dellacherie C., Meyer P.-A., Probabilities and Potential B: Theory of Martingales, North-Holland Math. Stud., 72, North-Holland, Amsterdam, 1982, 463 pp. | MR | Zbl
[13] Doob J. L., Stochastic Processes, Wiley, New York, 1990, 654 pp. | MR | Zbl
[14] Emery M., “Une topologie sur l'espace des semimartingales”, Lecture Notes in Math., 721, 1979, 260–280 | DOI | MR | Zbl
[15] Emery M., “A generalization of stochastic integration with respect to semimartingales”, Ann. Probab., 10:3 (1982), 709–727 | DOI | MR | Zbl
[16] Jacod J., Protter P., “Time reversal on {L}évy processes”, Ann. Probab., 16:2 (1988), 620–641 | DOI | MR | Zbl
[17] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 2003, 661 pp. | DOI | MR | Zbl
[18] Kwapień S., Woyczyński W. A., “Semimartingale integrals via decoupling inequalities and tangent processes”, Probab. Math. Statist., 12:2 (1991), 165–200 | MR | Zbl
[19] Kwapień S., Woyczyński W. A., Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston, 1992, 360 pp. | MR | Zbl
[20] Lenglart E., “Relation de domination entre deux processus”, Ann. Inst. H. Poincaré Sect. B (N.S.), 13:2 (1977), 171–179 | MR | Zbl
[21] Mémin J., “Espaces de semi martingales et changement de probabilité”, Z. Wahrscheinlichkeitstheor. verw. Geb., 52:1 (1980), 9–39 | DOI | MR
[22] Musielak J., “Orlicz spaces and modular spaces”, Lecture Notes in Math., 1034, 1983, 1–222 | DOI | MR
[23] Rajput B. S., Rosiński J., “Spectral representations of infinitely divisible processes”, Probab. Theory Related Fields, 82:3 (1989), 451–487 | DOI | MR | Zbl
[24] Rolewicz S., Metric Linear Spaces, Mathematics and its Applications (East European Ser., 20, Reidel, Dordrecht, 1985, 459 pp. | MR | Zbl
[25] Rosiński J., Woyczyński W. A., “On {I}tô stochastic integration with respect to $ p$-stable motion: inner clock, integrability of sample paths, double and multiple integrals”, Ann. Probab., 14:1 (1986), 271–286 | DOI | MR | Zbl
[26] Ryll-Nardzewski C., Woyczyński W. A., “Bounded multiplier convergence in measure of random vector series”, Proc. Amer. Math. Soc., 53:1 (1975), 96–98 | DOI | MR | Zbl
[27] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR | Zbl
[28] Schwartz L., “Les semi-martingales formelles”, Lecture Notes in Math., 850, 1981, 413–489 | DOI | MR | Zbl
[29] Talagrand M., “Les mesures vectorielles à valeurs dans {$ L^{0}$} sont bornées”, Ann. Sci. École Norm. Sup. (4), 14:4 (1981), 445–452 | MR | Zbl