Stochastic integration on the real line
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 355-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stochastic integration on the predictable $\sigma$-field with respect to increment semimartingales, and, more generally, $\sigma$-finite $L^0$-valued measures is studied. The latter are also known as formal semimartingales. In particular, the triplet of $\sigma$-finite measures is introduced and used to characterize the set of integrable processes. Special attention is given to Lévy processes indexed by the real line. Surprisingly, many of the basic properties break down in this situation compared to the usual $\mathbf{R}_+$ case. The results enable us to define, represent, and study different classes of stationary processes.
Keywords: stochastic integration; (increment) semimartingales; Lévy processes.
@article{TVP_2013_58_2_a7,
     author = {A. Basse-O'Connor and S.-E. Graversen and J. Pedersen},
     title = {Stochastic integration on the real line},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {355--380},
     year = {2013},
     volume = {58},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a7/}
}
TY  - JOUR
AU  - A. Basse-O'Connor
AU  - S.-E. Graversen
AU  - J. Pedersen
TI  - Stochastic integration on the real line
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 355
EP  - 380
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a7/
LA  - en
ID  - TVP_2013_58_2_a7
ER  - 
%0 Journal Article
%A A. Basse-O'Connor
%A S.-E. Graversen
%A J. Pedersen
%T Stochastic integration on the real line
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 355-380
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a7/
%G en
%F TVP_2013_58_2_a7
A. Basse-O'Connor; S.-E. Graversen; J. Pedersen. Stochastic integration on the real line. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 355-380. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a7/

[1] Barndorff-Nielsen O. E., Schmiegel J., “Ambit processes: with applications to turbulence and tumour growth”, Stochastic Analysis and Applications, Abel Symp., v. 2, Springer, Berlin, 2007, 93–124 | DOI | MR | Zbl

[2] Barndorff-Nielsen O. E., Schmiegel J., “A stochastic differential equation framework for the timewise dynamics of turbulent velocities”, Teoriya veroyatn. i ee primen., 52:3 (2007), 541–561 | DOI | MR

[3] Barndorff-Nielsen O. E., Schmiegel J., “Brownian semistationary processes and volatility/intermittency”, Advanced Financial Modelling, Radon Ser. Comput. Appl. Math., 8, de Gruyter, Berlin, 2009, 1–25 | MR | Zbl

[4] Basse-O'Connor A., Graversen S.-E., Pedersen J., “Martingale-type processes indexed by the real line”, ALEA Lat. Am. J. Probab. Math. Statist., 7 (2010), 117–137 | MR

[5] Basse-O'Connor A., Graversen S.-E., Pedersen J., “Some classes of proper integrals and generalized {O}rnstein–{U}hlenbeck processes”, Lecture Notes in Math., 2046, 2012, 61–74 | DOI | MR

[6] Basse-O'Connor A., Graversen S.-E., Pedersen J., A unified approach to stochastic integration on the real line, Thiele Research Report No 2010-08 http://www.imf.au.dk/publication/publid/880

[7] Behme A., Lindner A., Maller R. A., “Stationary solutions of the stochastic differential equation $d{V}_t = {V}_{t-}\,d{U}_t + d{L}_t$ with {L}évy noise”, Stochastic Process. Appl., 121:1 (2011), 91–108 | DOI | MR | Zbl

[8] Bichteler K., “Measures with values in non-locally convex spaces”, Lecture Notes in Math., 541, 1976, 277–285 | DOI | MR | Zbl

[9] Bichteler K., “Stochastic integration and $ L\sp{p}$-theory of semimartingales”, Ann. Probab., 9:1 (1981), 49–89 | DOI | MR | Zbl

[10] Bichteler K., Jacod J., “Random measures and stochastic integration”, Lecture Notes in Control and Inform. Sci., 49, 1983, 1–18 | DOI | MR | Zbl

[11] Cherny A., Shiryaev A., “On stochastic integrals up to infinity and predictable criteria for integrability”, Lecture Notes in Math., 1857 (2005), 165–185 | MR | Zbl

[12] Dellacherie C., Meyer P.-A., Probabilities and Potential B: Theory of Martingales, North-Holland Math. Stud., 72, North-Holland, Amsterdam, 1982, 463 pp. | MR | Zbl

[13] Doob J. L., Stochastic Processes, Wiley, New York, 1990, 654 pp. | MR | Zbl

[14] Emery M., “Une topologie sur l'espace des semimartingales”, Lecture Notes in Math., 721, 1979, 260–280 | DOI | MR | Zbl

[15] Emery M., “A generalization of stochastic integration with respect to semimartingales”, Ann. Probab., 10:3 (1982), 709–727 | DOI | MR | Zbl

[16] Jacod J., Protter P., “Time reversal on {L}évy processes”, Ann. Probab., 16:2 (1988), 620–641 | DOI | MR | Zbl

[17] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 2003, 661 pp. | DOI | MR | Zbl

[18] Kwapień S., Woyczyński W. A., “Semimartingale integrals via decoupling inequalities and tangent processes”, Probab. Math. Statist., 12:2 (1991), 165–200 | MR | Zbl

[19] Kwapień S., Woyczyński W. A., Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston, 1992, 360 pp. | MR | Zbl

[20] Lenglart E., “Relation de domination entre deux processus”, Ann. Inst. H. Poincaré Sect. B (N.S.), 13:2 (1977), 171–179 | MR | Zbl

[21] Mémin J., “Espaces de semi martingales et changement de probabilité”, Z. Wahrscheinlichkeitstheor. verw. Geb., 52:1 (1980), 9–39 | DOI | MR

[22] Musielak J., “Orlicz spaces and modular spaces”, Lecture Notes in Math., 1034, 1983, 1–222 | DOI | MR

[23] Rajput B. S., Rosiński J., “Spectral representations of infinitely divisible processes”, Probab. Theory Related Fields, 82:3 (1989), 451–487 | DOI | MR | Zbl

[24] Rolewicz S., Metric Linear Spaces, Mathematics and its Applications (East European Ser., 20, Reidel, Dordrecht, 1985, 459 pp. | MR | Zbl

[25] Rosiński J., Woyczyński W. A., “On {I}tô stochastic integration with respect to $ p$-stable motion: inner clock, integrability of sample paths, double and multiple integrals”, Ann. Probab., 14:1 (1986), 271–286 | DOI | MR | Zbl

[26] Ryll-Nardzewski C., Woyczyński W. A., “Bounded multiplier convergence in measure of random vector series”, Proc. Amer. Math. Soc., 53:1 (1975), 96–98 | DOI | MR | Zbl

[27] Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR | Zbl

[28] Schwartz L., “Les semi-martingales formelles”, Lecture Notes in Math., 850, 1981, 413–489 | DOI | MR | Zbl

[29] Talagrand M., “Les mesures vectorielles à valeurs dans {$ L^{0}$} sont bornées”, Ann. Sci. École Norm. Sup. (4), 14:4 (1981), 445–452 | MR | Zbl