On the Laplace method for Gaussian measures in a Banach space
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 325-354
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we prove results on sharp asymptotics for the probabilities $P_A(uD)$, as $u\to\infty$, where $P_A$ is the Gaussian measure in an infinite-dimensional Banach space $B$ with zero mean and nondegenerate covariance operator $A$, $D=\{x\in B:Q(x)\geqslant 0\}$ is a Borel set in $B$, and $Q$ is a smooth function. We analyze the case where the action functional attains its minimum on some set $D$ on a one-dimensional manifold. We make use of the Laplace method in Banach spaces for Gaussian measures. Based on the general result obtained, for $0$ we find a sharp asymptotics for large deviations of distributions of $L^p$-functionals for the centered Brownian bridge which arises as the limit while studying the Watson statistics. Explicit constants are given for the cases $p=1$ and $p=2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Laplace’s method; large deviations; gaussian process; principle of large deviations; action functional; centered Brownian bridge; Watson statistics; hypergeometric function.
                    
                  
                
                
                @article{TVP_2013_58_2_a6,
     author = {V. R. Fatalov},
     title = {On the {Laplace} method for {Gaussian} measures in a {Banach} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {325--354},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a6/}
}
                      
                      
                    V. R. Fatalov. On the Laplace method for Gaussian measures in a Banach space. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 325-354. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a6/
