Coding theorems for hybrid channels
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 298-324 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result of this paper is the coding theorem for the entanglement-assisted capacity of measurement channel with arbitrary alphabet (Theorem 3). As a by-product, a number of results concerning entropies of hybrid (classical-quantum) systems are obtained, as well as the capacities of channels with hybrid output, which are used in the proof of Theorem 3.
Keywords: communication channel; hybrid (classical-quantum) probability system; classical capacity; entangled state; coding theorem.
@article{TVP_2013_58_2_a5,
     author = {A. A. Kuznetsova and A. S. Holevo},
     title = {Coding theorems for hybrid channels},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {298--324},
     year = {2013},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a5/}
}
TY  - JOUR
AU  - A. A. Kuznetsova
AU  - A. S. Holevo
TI  - Coding theorems for hybrid channels
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 298
EP  - 324
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a5/
LA  - ru
ID  - TVP_2013_58_2_a5
ER  - 
%0 Journal Article
%A A. A. Kuznetsova
%A A. S. Holevo
%T Coding theorems for hybrid channels
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 298-324
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a5/
%G ru
%F TVP_2013_58_2_a5
A. A. Kuznetsova; A. S. Holevo. Coding theorems for hybrid channels. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 298-324. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a5/

[1] Nilsen M. A., Chang I. L., Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006, 822 pp.

[2] Kholevo A. S., Kvantovye sistemy, kanaly, informatsiya, MTsNMO, M., 2010, 327 pp.

[3] Bennett C. H., Shor P. W., Smolin J. A., Thaplyal A. V., “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem”, IEEE Trans. Inform. Theory, 48:10 (2002), 2637–2655 | DOI | MR | Zbl

[4] Kholevo A. S., “Informatsionnaya emkost kvantovoi nablyudaemoi”, Problemy peredachi informatsii, 48:1 (2012), 3–13

[5] Kholevo A. S., “Klassicheskie propusknye sposobnosti kvantovogo kanala s ogranicheniem na vkhode”, Teoriya veroyatn. i ee primen., 48:2 (2003), 359–374 | DOI | Zbl

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1985, 357 pp.

[7] Barchielli A., Lupieri G., “Instruments and channels in quantum information theory”, Optics and Spectroscopy, 99 (2005), 425–432 | DOI

[8] Barchielli A., Lupieri G., “Instruments and mutual entropies in quantum information”, Banach Center Publ., 73, 2006, 65–80 | DOI | MR | Zbl

[9] Kuznetsova A. A., “Uslovnaya entropiya dlya beskonechnomernykh kvantovykh sistem”, Teoriya veroyatn. i ee primen., 55:4 (2010), 782–790 | DOI | MR

[10] Wehrl A., “General properties of entropy”, Rev. Modern Phys., 50 (1978), 221–260 | DOI | MR

[11] Cover T. M., Thomas J. A., Elements of Information Theory, Wiley, New York, 1991, 542 pp. | MR | Zbl

[12] Shirokov M. E., “Entropy reduction of quantum measurements”, J. Math. Phys., 52:5 (2011), 052202, 18 | DOI | MR

[13] Lindblad G., “Expectations and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39 (1974), 111–119 | DOI | MR | Zbl