@article{TVP_2013_58_2_a3,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {On a probabilistic method of solving a one-dimensional initial-boundary value problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {255--281},
year = {2013},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/}
}
TY - JOUR AU - I. A. Ibragimov AU - N. V. Smorodina AU - M. M. Faddeev TI - On a probabilistic method of solving a one-dimensional initial-boundary value problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2013 SP - 255 EP - 281 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/ LA - ru ID - TVP_2013_58_2_a3 ER -
%0 Journal Article %A I. A. Ibragimov %A N. V. Smorodina %A M. M. Faddeev %T On a probabilistic method of solving a one-dimensional initial-boundary value problem %J Teoriâ veroâtnostej i ee primeneniâ %D 2013 %P 255-281 %V 58 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/ %G ru %F TVP_2013_58_2_a3
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a probabilistic method of solving a one-dimensional initial-boundary value problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 255-281. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/
[1] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975, 319 pp.
[2] Skorokhod A. V., “Stokhasticheskie uravneniya dlya protsessov diffuzii s granitsami”, Teoriya veroyatn. i ee primen., 6:3 (1961), 287–298 | MR
[3] Chung K. L., Zhao Z. X, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, Berlin–Heidelberg, 1995, 287 pp. | MR | Zbl
[4] Freidlin M., Functional Integration and Partial Differential Equations, Princeton Univ. Press, Princeton, 1985, 545 pp. | MR | Zbl
[5] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983, 383 pp.
[6] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki: Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984, 445 pp. | MR | Zbl
[7] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978, 396 pp.
[8] Doss H., “Sur une résolution stochastique de l'équation de Schrödinger à coefficients analytiques”, Comm. Math. Phys., 73:4 (1980), 247–264 | DOI | MR | Zbl
[9] Albeverio S., Høegh-Krohn R. J., Mazzucchi S., “Mathematical theory of Feynman path integrals”, Lecture Notes in Math., 523, 2008, 1–176 | DOI | MR
[10] Thaler H., “Solution of Schrödinger equations on compact Lie groups via probabilistic methods”, Potential Anal., 18:2 (2003), 119–140 | DOI | MR | Zbl
[11] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976, 191 pp.
[12] Maslov V. P., Chebotarev A. M., “Opredelenie kontinualnogo integrala Feinmana v $p$-predstavlenii”, Dokl. AN SSSR, 229:1 (1976), 37–38 | MR | Zbl
[13] Chebotarev A. M., “O predstavlenii resheniya uravneniya Shredingera v vide matematicheskogo ozhidaniya funktsionalov skachkoobraznogo protsessa”, Matem. zametki, 24:5 (1978), 699–706 | MR | Zbl
[14] Albeverio S., Smorodina N., Faddeev M., “The probabilistic representation of the exponent of a class of pseudo-differential operators”, J. Global Stoch. Anal., 1:2 (2011), 123–148
[15] Ibragimov I. A., Smorodina N. V., Faddeev M. M., “Veroyatnostnaya approksimatsiya reshenii zadachi Koshi dlya nekotorykh evolyutsionnykh uravnenii”, Zap. nauchn. sem. POMI, 396, 2011, 111–143
[16] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958, 439 pp.
[17] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971, 664 pp.