On a probabilistic method of solving a one-dimensional initial-boundary value problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 255-281

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation $\partial u/\partial t+(\sigma^2/2)\partial^2u/\partial x^2+f(x)u=0$, where $\sigma$ is a complex number.
Keywords: random processes; evolution equation; limit theorems; Feynman–Kac formula; Feynman integral; Feynman measure.
@article{TVP_2013_58_2_a3,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {On a probabilistic method of solving a one-dimensional initial-boundary value problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {255--281},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - On a probabilistic method of solving a one-dimensional initial-boundary value problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 255
EP  - 281
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/
LA  - ru
ID  - TVP_2013_58_2_a3
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T On a probabilistic method of solving a one-dimensional initial-boundary value problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 255-281
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/
%G ru
%F TVP_2013_58_2_a3
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a probabilistic method of solving a one-dimensional initial-boundary value problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 255-281. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a3/