Law of large numbers for the number of active particles in the epidemic model
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 235-254

Voir la notice de l'article provenant de la source Math-Net.Ru

In the last decade, a large number of papers was devoted to studying probabilistic properties of epidemic models on graphs. In this paper we consider a generalization of the model proposed by Machado, Mashurian, and Matzinger. The Machado–Mashurian–Matzinger model serves as an interpretation of spread of viruses in a computer network. We assume that at each moment of time more than one node of the network can be infected. In this context we propose a more advanced model permitting jumps of several particles each time, while the number of such particles is random. We prove the optimal version of the law of large numbers for the number of infected particles in the epidemic model at hand.
Keywords: epidemic model; random walks; law of large numbers; branching processes.
@article{TVP_2013_58_2_a2,
     author = {M. E. Zhukovskii},
     title = {Law of large numbers for the number of active particles in the epidemic model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {235--254},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
TI  - Law of large numbers for the number of active particles in the epidemic model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 235
EP  - 254
VL  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/
LA  - ru
ID  - TVP_2013_58_2_a2
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%T Law of large numbers for the number of active particles in the epidemic model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 235-254
%V 58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/
%G ru
%F TVP_2013_58_2_a2
M. E. Zhukovskii. Law of large numbers for the number of active particles in the epidemic model. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 235-254. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/