@article{TVP_2013_58_2_a2,
author = {M. E. Zhukovskii},
title = {Law of large numbers for the number of active particles in the epidemic model},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {235--254},
year = {2013},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/}
}
M. E. Zhukovskii. Law of large numbers for the number of active particles in the epidemic model. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 235-254. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/
[1] Alves O., Machado F., Popov S., “Phase transition for the frog model”, Electron. J. Probab., 7 (2002), 16, 21 pp. | DOI | MR | Zbl
[2] Lebensztayn E., Machado F., Popov S., “An improved upper bound for the critical probability of the frog model on homogeneous trees”, J. Statist. Phys., 119:1–2 (2005), 331–345 | DOI | MR | Zbl
[3] Alves O., Machado F., Popov S., “The shape theorem for the frog model”, Ann. Appl. Probab., 12:2 (2002), 533–546 | DOI | MR | Zbl
[4] Kurkova I., Popov S., Vachkovskaia M., “On infection spreading and competition between independent random walks”, Electron. J. Probab., 9 (2004), 11, 293–315 | DOI | MR | Zbl
[5] Popov S., “Frogs in random environment”, J. Statist. Phys., 102:1–2 (2001), 191–201 | DOI | MR | Zbl
[6] Ramírez A. F., Sidoravicius V., “Asymptotic behavior of a stochastic combustion growth process”, J. Eur. Math. Soc. (JEMS), 6:3 (2004), 293–334 | MR | Zbl
[7] Telcs A., Wormald N., “Branching and tree indexed random walks on fractals”, J. Appl. Probab., 36:4 (1999), 999–1011 | DOI | MR | Zbl
[8] Durrett R., Random Graph Dynamics, Cambridge University Press, Cambridge, 2007, 212 pp. | MR | Zbl
[9] Bollobás B., Riordan O. M., “Mathematical results on scale-free random graphs”, Handbook of Graphs and Networks: From the Genome to the Internet, eds. S. Bornholdt, H. G. Schuster, Wiley-VCH, Weinheim, 2003, 1–34 | MR
[10] Machado F., Mashurian H., Matzinger H., “CLT for the proportion of infected individuals for an epidemic model on a complete graph”, Markov Process. Related Fields, 17:2 (2011), 209–224 | MR | Zbl
[11] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985
[12] Chernoff H., “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Statist., 23:4 (1952), 493–507 | DOI | MR | Zbl
[13] Shiryaev A. N., Veroyatnost, v. 1, MTsNMO, M., 2007, 551 pp.
[14] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp.
[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.