Law of large numbers for the number of active particles in the epidemic model
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 235-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the last decade, a large number of papers was devoted to studying probabilistic properties of epidemic models on graphs. In this paper we consider a generalization of the model proposed by Machado, Mashurian, and Matzinger. The Machado–Mashurian–Matzinger model serves as an interpretation of spread of viruses in a computer network. We assume that at each moment of time more than one node of the network can be infected. In this context we propose a more advanced model permitting jumps of several particles each time, while the number of such particles is random. We prove the optimal version of the law of large numbers for the number of infected particles in the epidemic model at hand.
Keywords: epidemic model; random walks; law of large numbers; branching processes.
@article{TVP_2013_58_2_a2,
     author = {M. E. Zhukovskii},
     title = {Law of large numbers for the number of active particles in the epidemic model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {235--254},
     year = {2013},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
TI  - Law of large numbers for the number of active particles in the epidemic model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 235
EP  - 254
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/
LA  - ru
ID  - TVP_2013_58_2_a2
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%T Law of large numbers for the number of active particles in the epidemic model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 235-254
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/
%G ru
%F TVP_2013_58_2_a2
M. E. Zhukovskii. Law of large numbers for the number of active particles in the epidemic model. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 235-254. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a2/

[1] Alves O., Machado F., Popov S., “Phase transition for the frog model”, Electron. J. Probab., 7 (2002), 16, 21 pp. | DOI | MR | Zbl

[2] Lebensztayn E., Machado F., Popov S., “An improved upper bound for the critical probability of the frog model on homogeneous trees”, J. Statist. Phys., 119:1–2 (2005), 331–345 | DOI | MR | Zbl

[3] Alves O., Machado F., Popov S., “The shape theorem for the frog model”, Ann. Appl. Probab., 12:2 (2002), 533–546 | DOI | MR | Zbl

[4] Kurkova I., Popov S., Vachkovskaia M., “On infection spreading and competition between independent random walks”, Electron. J. Probab., 9 (2004), 11, 293–315 | DOI | MR | Zbl

[5] Popov S., “Frogs in random environment”, J. Statist. Phys., 102:1–2 (2001), 191–201 | DOI | MR | Zbl

[6] Ramírez A. F., Sidoravicius V., “Asymptotic behavior of a stochastic combustion growth process”, J. Eur. Math. Soc. (JEMS), 6:3 (2004), 293–334 | MR | Zbl

[7] Telcs A., Wormald N., “Branching and tree indexed random walks on fractals”, J. Appl. Probab., 36:4 (1999), 999–1011 | DOI | MR | Zbl

[8] Durrett R., Random Graph Dynamics, Cambridge University Press, Cambridge, 2007, 212 pp. | MR | Zbl

[9] Bollobás B., Riordan O. M., “Mathematical results on scale-free random graphs”, Handbook of Graphs and Networks: From the Genome to the Internet, eds. S. Bornholdt, H. G. Schuster, Wiley-VCH, Weinheim, 2003, 1–34 | MR

[10] Machado F., Mashurian H., Matzinger H., “CLT for the proportion of infected individuals for an epidemic model on a complete graph”, Markov Process. Related Fields, 17:2 (2011), 209–224 | MR | Zbl

[11] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985

[12] Chernoff H., “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Statist., 23:4 (1952), 493–507 | DOI | MR | Zbl

[13] Shiryaev A. N., Veroyatnost, v. 1, MTsNMO, M., 2007, 551 pp.

[14] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp.

[15] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.