@article{TVP_2013_58_2_a12,
author = {D. V. Belomestny and V. G. Spokoiny},
title = {Concentration inequalities for smooth random fields},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {401--410},
year = {2013},
volume = {58},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a12/}
}
D. V. Belomestny; V. G. Spokoiny. Concentration inequalities for smooth random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 401-410. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a12/
[1] Bednorz W., “A theorem on majorizing measures”, Ann. Probab., 34:5 (2006), 1771–1781 | DOI | MR | Zbl
[2] Ledoux M., The Concentration of Measure Phenomenon, Amer. Math. Soc., Providence, RI, 2001, 181 pp. | MR | Zbl
[3] Lugosi G., Concentration-of-Measure Inequalities: Lecture Notes, , 2005 http://www.econ.upf.edu/l̃ugosi/anu.pdf
[4] Mackey L., Jordan M. I., Chen R. Y., Farrell B., Tropp J. A., Matrix concentration inequalities via the method of exchangeable pairs, arXiv: 1201.6002
[5] Massart P., “Some applications of concentration inequalities to statistics”, Ann. Fac. Sci. Toulouse, 9:2 (2000), 245–303 | DOI | MR | Zbl
[6] Spokoiny V., Parametric estimation. Finite sample theory, arXiv: 1111.3029v4 | MR
[7] Talagrand M., The Generic Chaining, Springer-Verlag, Berlin, 2005, 222 pp. | MR | Zbl