Refinements of classical probability estimates
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 398-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we obtain several refinements of the classical probability estimates of Kolmogorov, Prokhorov, and Chebyshev using a generalization of the Prokhorov multidimensional analogue of the Chebyshev inequality.
Keywords: Chebyshev inequality; Kolmogorov inequality; Prokhorov inequality; specified upper and lower probability estimates; function discontinuity; discreteness of a random variable; discrete probability.
@article{TVP_2013_58_2_a11,
     author = {N. V. Sokolov},
     title = {Refinements of classical probability estimates},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {398--400},
     year = {2013},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a11/}
}
TY  - JOUR
AU  - N. V. Sokolov
TI  - Refinements of classical probability estimates
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 398
EP  - 400
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a11/
LA  - ru
ID  - TVP_2013_58_2_a11
ER  - 
%0 Journal Article
%A N. V. Sokolov
%T Refinements of classical probability estimates
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 398-400
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a11/
%G ru
%F TVP_2013_58_2_a11
N. V. Sokolov. Refinements of classical probability estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 398-400. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a11/

[1] Sokolov N. V., “Obobschenie prokhorovskogo mnogomernogo analoga neravenstva Chebyshëva”, Ukr. matem. zhurn., 58:4 (2006), 573–576 | Zbl

[2] Sokolov N. V., “Rasshirenie vozmozhnostei neravenstv chebyshevskogo tipa”, Dokl. RAN, 384:3 (2002), 308–311 | MR | Zbl

[3] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, FAZIS, M., 1998, 129 pp.

[4] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985

[5] Prokhorov Yu. V., “Mnogomernye raspredeleniya: neravenstva i predelnye teoremy”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 10, VINITI, M., 1972, 5–24 | Zbl