Refinements of classical probability estimates
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 398-400
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we obtain several refinements of the classical probability estimates of Kolmogorov, Prokhorov, and Chebyshev using a generalization of the Prokhorov multidimensional analogue of the Chebyshev inequality.
Keywords:
Chebyshev inequality; Kolmogorov inequality; Prokhorov inequality; specified upper and lower probability estimates; function discontinuity; discreteness of a random variable; discrete probability.
@article{TVP_2013_58_2_a11,
author = {N. V. Sokolov},
title = {Refinements of classical probability estimates},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {398--400},
year = {2013},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a11/}
}
N. V. Sokolov. Refinements of classical probability estimates. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 398-400. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a11/
[1] Sokolov N. V., “Obobschenie prokhorovskogo mnogomernogo analoga neravenstva Chebyshëva”, Ukr. matem. zhurn., 58:4 (2006), 573–576 | Zbl
[2] Sokolov N. V., “Rasshirenie vozmozhnostei neravenstv chebyshevskogo tipa”, Dokl. RAN, 384:3 (2002), 308–311 | MR | Zbl
[3] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, FAZIS, M., 1998, 129 pp.
[4] Matematicheskaya entsiklopediya, v. 5, Sovetskaya entsiklopediya, M., 1985
[5] Prokhorov Yu. V., “Mnogomernye raspredeleniya: neravenstva i predelnye teoremy”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 10, VINITI, M., 1972, 5–24 | Zbl