@article{TVP_2013_58_2_a1,
author = {L. G. Afanasyeva and A. V. Tkachenko},
title = {Multichannel queueing systems with regenerative input flow},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {210--234},
year = {2013},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a1/}
}
L. G. Afanasyeva; A. V. Tkachenko. Multichannel queueing systems with regenerative input flow. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 210-234. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a1/
[1] Afanaseva L. G., Martynov A. V., “Ob ergodicheskikh svoistvakh sistem massovogo obsluzhivaniya s ogranichennym vremenem prebyvaniya”, Teoriya veroyatn. i ee primen., 14:1 (1969), 102–112 | MR | Zbl
[2] Afanaseva L. G., “Sistemy massovogo obsluzhivaniya s tsiklicheskimi upravlyayuschimi protsessami”, Kibernetika i sistemnyi analiz, 2005, no. 1, 54–69 | MR
[3] Afanaseva L. G., Bashtova E. E., “Predelnye teoremy dlya sistem massovogo obsluzhivaniya v usloviyakh vysokoi zagruzki”, Sovremennye problemy matematiki i mekhaniki, IV (2009), 40–54
[4] Afanaseva L. G., Bulinskaya E. V., Sluchainye protsessy v teorii massovogo obsluzhivaniya i upravleniya zapasami, Izd-vo Mosk. un-ta, M., 1980
[5] Afanaseva L. G., Rudenko I. V., “Sistemy obsluzhivaniya $ G|G|\infty$ i ikh prilozheniya k analizu transportnykh modelei”, Teoriya veroyatn. i ee primen., 57:3 (2012), 427–452 | DOI | MR
[6] Belorusov T. N., “Ergodichnost mnogokanalnoi sistemy obsluzhivaniya s vozmozhnostyu neprisoedineniya k ocheredi”, Teoriya veroyatn. i ee primen., 56:1 (2011), 145–152 | DOI | MR | Zbl
[7] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 367 pp.
[8] Borovkov A. A., Asimptoticheskie metody v teorii massovogo obsluzhivaniya, Nauka, M., 1980, 381 pp.
[9] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, Editorial URSS, M., 1999, 440 pp.
[10] Borovkov A. A., “Nekotorye predelnye teoremy teorii massovogo obsluzhivaniya. II: Mnogokanalnye sistemy”, Teoriya veroyatn. i ee primen., 10:3 (1965), 409–436
[11] Gnedenko B. V., Kovalenko I. N., Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1966, 431 pp.
[12] Koks D. R., Smit V. L., Teoriya vosstanovleniya, Sovetskoe radio, M., 1967, 299 pp.
[13] Maryanovich T. P., “Odnolineinaya sistema massovogo obsluzhivaniya s nenadezhnym priborom”, Ukr. matem. zhurn., 14:4 (1962), 417–422 | MR
[14] Rudenko I. V., “Dvukhfazovaya sistema obsluzhivaniya s nenadezhnymi priborami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 4, 4–12
[15] Afanasyeva L. G., Bashtova E. E., Bulinskaya E. V., “Limit theorems for semi-Markov queues and their applications”, Comm. Statist. Simulation Comput., 41:6 (2012), 688–709 | DOI | MR | Zbl
[16] Asmussen S., “Semi-Markov queues with heavy tails”, Semi-Markov Models and Application, eds. J. Janssen et al., Kluwer, Dordrecht, 1999, 269–284 | DOI | MR | Zbl
[17] Asmussen S., Applied Probability and Queues, Wiley, Chichester, 1987, 318 pp. | MR | Zbl
[18] Falin G., “An $ M|G|1$ retrial queue with an unreliable server and general repair times”, Perfomance Evaluation, 67:7 (2010), 569–582 | DOI
[19] Foss S., Kalashnikov V., “Regeneration and Renovation in Queues”, Queueing Syst., 8:3 (1991), 211–223 | DOI | MR
[20] Gaver D. P., Jr., “A waiting line with interrupted service, including priorities”, J. Roy. Statist. Soc., Ser. B, 24:1962 (1962), 73–96 | MR
[21] Grandell D. P., “Doubly stochastic poisson process”, Lecture Notes in Math., 529, 1976, 1–234 | DOI | MR
[22] Iglehart D., Whitt W., “Multiple channel queues in heavy traffic, I”, Adv. Appl. Probab., 2 (1970), 150–177 | DOI | MR | Zbl
[23] Kiefer J., Wolfowitz J., “On the theory of queues with many servers”, Trans. Amer. Math. Soc., 78 (1955), 1–18 | DOI | MR | Zbl
[24] Loynes R., “The stability of a queue with nonindependent inter-arrival and service times”, Proc. Cambridge Philos. Soc., 58 (1962), 497–520 | DOI | MR | Zbl
[25] Neuts M. F., Lucantoni D. M., “A Markovian queue with $ N$ servers subject to breakdowns and repairs”, Management Sci., 25:9 (1979), 849–861 | DOI | MR
[26] Morozov E., Stochastic boundness of some queueing processes, Preprint No R-95-2022, Dept. Math. and Computer Sci., Aalborg Univ., Aalborg, 1995, 28 pp.
[27] Morozov E., “The stability of a non-homogeneous queueing system with regenerative input”, J. Math. Sci. (N.Y.), 83:3 (1997), 407–421 | DOI | MR | Zbl
[28] Morozov E., “The tightness in the ergodic analysis of regenerative queueing processes”, Queueing Systems Theory Appl., 27:1–2 (1997), 179–203 | DOI | MR | Zbl
[29] Morozov E., “Weak regeneration in modeling of queueing processes”, Queueing Syst., 46:3–4 (2004), 295–315 | DOI | MR | Zbl
[30] Sadowsky J. S., Szpankowski W., “The probability of large queue lengths and waiting times in a heterogeneous multiserver queue. I: Tight limits”, Adv. Appl. Probab., 27:2 (1995), 532–566 | DOI | MR | Zbl
[31] Smith W. L., “Regenerative Stochastic Processes”, Proc. Roy. Soc. Lond., 232:1188 (1955), 6–31 | DOI | MR | Zbl
[32] Thorisson H., “A complete coupling proof of Blackwell's renewal theorem”, Stochasic Process. Appl., 26 (1987), 87–97 | DOI | MR | Zbl