Asymptotic behavior of central order statistics under monotone normalization
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 177-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

N. V. Smirnov [Tr. Mat. Inst. Steklova 25, 59 p. (1949; Zbl 0041.45301)] derived four limit types of distributions for linearly normalized central order statistics under the weak convergence. In this paper we investigate the possible limit distributions of the kth upper order statistics with central rank using monotone regular norming sequences and obtain 13 possible types.
Keywords: $k$th upper order statistic; central rank; monotone normalization; regular norming sequence.
@article{TVP_2013_58_1_a9,
     author = {E. I. Pancheva and A. Gacovska},
     title = {Asymptotic behavior of central order statistics under monotone normalization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {177--192},
     year = {2013},
     volume = {58},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/}
}
TY  - JOUR
AU  - E. I. Pancheva
AU  - A. Gacovska
TI  - Asymptotic behavior of central order statistics under monotone normalization
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 177
EP  - 192
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/
LA  - en
ID  - TVP_2013_58_1_a9
ER  - 
%0 Journal Article
%A E. I. Pancheva
%A A. Gacovska
%T Asymptotic behavior of central order statistics under monotone normalization
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 177-192
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/
%G en
%F TVP_2013_58_1_a9
E. I. Pancheva; A. Gacovska. Asymptotic behavior of central order statistics under monotone normalization. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/

[1] Balkema A. A., de Haan L., “Limit distributions for order statistics, I”, Teoriya veroyatn. i ee primen., 23:1 (1978), 80–96 | MR | Zbl

[2] Balkema A. A., de Haan L., “Limit distributions for order statistics, II”, Teoriya veroyatn. i ee primen., 23:2 (1978), 358–375 | MR | Zbl

[3] Balkema A. A., “Some new limit laws for maxima and order statistics under power norming”, Extremes (to appear)

[4] Chibisov D. M., “O predelnykh raspredeleniyakh dlya chlenov variatsionnogo ryada”, Teoriya veroyatn. i ee primen., 9:1 (1964), 159–164

[5] Pancheva E., “Limit theorems for extreme order statistics under nonlinear normalization”, Stability Problems for Stochastic Models, Proceedings (Uzgorod, 1984), Springer-Verlag, 284–309 | MR

[6] Barakat H. M., Omar A. R., “Limit theorems for intermediate and central order statistics under nonlinear normalization”, J. Statist. Planning Inference, 141:1 (2011), 524–535 | DOI | MR | Zbl

[7] Atsel Ya., “Nekotorye obschie metody v teorii funktsionalnykh uravnenii odnoi peremennoi. Novye primeneniya funktsionalnykh uravnenii”, Uspekhi matem. nauk, 11:3 (1956), 3–68

[8] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp. | MR

[9] Smirnov N. V., “Predelnye zakony raspredeleniya dlya chlenov variatsionnogo ryada”, Tr. MIAN, 25, 1949, 3–60

[10] Embrechts P., Kluppelberg C., Mikosh T., Modelling Extremal Events for Insurance and Finance, Springer, Berlin, 1997, 545 pp. | MR | Zbl