Asymptotic behavior of central order statistics under monotone normalization
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 177-192
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              N. V. Smirnov [Tr. Mat. Inst. Steklova 25, 59 p. (1949; Zbl 0041.45301)] derived four limit types of distributions for linearly normalized central order statistics under the weak convergence. In this paper we investigate the possible limit distributions of the kth upper order statistics with central rank using monotone regular norming sequences and obtain 13 possible types.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$k$th upper order statistic; central rank; monotone normalization; regular norming sequence.
                    
                    
                    
                  
                
                
                @article{TVP_2013_58_1_a9,
     author = {E. I. Pancheva and A. Gacovska},
     title = {Asymptotic behavior of central order statistics under monotone normalization},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {177--192},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/}
}
                      
                      
                    TY - JOUR AU - E. I. Pancheva AU - A. Gacovska TI - Asymptotic behavior of central order statistics under monotone normalization JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2013 SP - 177 EP - 192 VL - 58 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/ LA - en ID - TVP_2013_58_1_a9 ER -
E. I. Pancheva; A. Gacovska. Asymptotic behavior of central order statistics under monotone normalization. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a9/
