@article{TVP_2013_58_1_a8,
author = {I. G. Shevtsova},
title = {On the accuracy of the normal approximation to compound {Poisson} distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {152--176},
year = {2013},
volume = {58},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a8/}
}
I. G. Shevtsova. On the accuracy of the normal approximation to compound Poisson distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 152-176. http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a8/
[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR
[2] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem, Nauka, M., 1982, 286 pp.
[3] Grigoreva M. E., Shevtsova I. G., “Utochnenie neravenstva Katsa–Berri–Esseena”, Inform. i ee primen., 4:2 (2010), 78–85
[4] Kolmogorov A. N., “Nekotorye raboty poslednikh let v oblasti predelnykh teorem teorii veroyatnostei”, Vestn. Mosk. un-ta, 10 (1953), 29–38 | Zbl
[5] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, Fizmatlit, M., 2011, 620 pp. | Zbl
[6] Korolev V. Yu., Shevtsova I. G., “Utochnenie verkhnei otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena dlya smeshannykh puassonovskikh sluchainykh summ”, Dokl. RAN, 431:1 (2010), 16–19 | MR | Zbl
[7] Kruglov V. M., Korolev V. Yu., Predelnye teoremy dlya sluchainykh summ, Izd-vo MGU, M., 1990, 296 pp. | MR | Zbl
[8] Matskyavichyus V. K., “O nizhnei otsenke skorosti skhodimosti v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 28:3 (1983), 565–569 | MR | Zbl
[9] Nefedova Yu. S., Utochnenie struktury momentnykh otsenok skorosti skhodimosti v predelnykh teoremakh dlya summ nezavisimykh sluchainykh velichin, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2011
[10] Nefedova Yu. S., Shevtsova I. G., “O tochnosti normalnoi approksimatsii dlya raspredelenii puassonovskikh sluchainykh summ”, Inform. i ee primen., 5:1 (2011), 39–45 | MR
[11] Rotar G. V., Nekotorye zadachi planirovaniya rezerva, Diss. ... kand. fiz.-matem. nauk, TsEMI, M., 1972
[12] Rotar G. V., “Ob odnoi zadache upravleniya rezervami”, Ekonom. matem. metody, 12:4 (1976), 733–739 | MR | Zbl
[13] Shevtsova I. G., “O tochnosti normalnoi approksimatsii dlya raspredelenii puassonovskikh sluchainykh summ”, Obozrenie prikl. i promyshl. matem., 14:1 (2007), 3–28 | Zbl
[14] Shevtsova I. G., “Nizhnyaya asimptoticheski pravilnaya postoyannaya v tsentralnoi predelnoi teoreme”, Dokl. RAN, 430:4 (2010), 466–469 | MR | Zbl
[15] Shevtsova I. G., “Ob asimptoticheski pravilnykh postoyannykh v neravenstve Berri–Esseena–Katsa”, Teoriya veroyatn. i ee primen., 55:2 (2010), 271–304 | DOI | MR
[16] Shevtsova I. G., “O tochnosti normalnoi approksimatsii dlya summ nezavisimykh sluchainykh velichin”, Dokl. RAN, 443:5 (2012), 555–560 | MR | Zbl
[17] Shevtsova I. G., “O tochnosti normalnoi approksimatsii dlya summ nezavisimykh simmetrichnykh sluchainykh velichin”, Dokl. RAN, 443:6 (2012), 671–676 | Zbl
[18] Shevtsova I. G., “Momentnye otsenki tochnosti normalnoi approksimatsii s utochnennoi strukturoi dlya summ nezavisimykh simmetrichnykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 57:3 (2012), 499–532 | DOI
[19] Shiganov I. S., “Ob utochnenii verkhnei konstanty v ostatochnom chlene tsentralnoi predelnoi teoremy”, Problemy ustoichivosti stokhasticheskikh modelei, VNIISI, M., 1982, 109–115 | MR
[20] van Beek P., “An application of Fourier methods to the problem of sharpening the Berry–Esseen inequality”, Z. Wahrscheilichkeistheor. verw. Geb., 23 (1972), 187–196 | DOI | MR | Zbl
[21] Bening V. E., Korolev V. Yu., Generalized Poisson Models and Their Applications in Insurance and Finance, VSP, Utrecht, 2002, 434 pp. | Zbl
[22] Bening V. E., Korolev V. Yu., Shorgin S. Ya., “On approximation to generalized Poisson distribuions”, J. Math. Sci., 83:3 (1997), 360–373 | DOI | MR | Zbl
[23] von Chossy R., Rappl G., “Some approximation methods for the distribution of random sums”, Insurance: Math. Econ., 2 (1983), 251–270 | DOI | MR | Zbl
[24] Englund G., “A remainder term estimate in a random-sum central limit theorem”, Teoriya veroyatn. i ee primen., 28:1 (1983), 143–149 | MR | Zbl
[25] Esseen C.-G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR
[26] Gnedenko B. V., Korolev V. Yu., Random summation: Limit Theorems and Applications, CRC Press, Boca Raton, 1996, 267 pp. | MR | Zbl
[27] Korolev V., Shevtsova I., “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuarial J., 2012:2 (2012), 81–105 | DOI | MR
[28] Korolev V. Yu., Shorgin S. Ya., “On the absolute constant in the remainder term estimate in the central limit theorem for Poisson random sums”, Probabilistic Methods in Discrete Mathematics, Proceeding of the Fourth International Petrozavodsk Conference, VSP, Utrecht, 1997, 305–308 | MR | Zbl
[29] Michel R., “On Berry–Esseen results for the compound Poisson distribution”, Insurance: Math. Econ., 13:1 (1993), 35–37 | DOI | MR | Zbl
[30] Nefedova Yu., Shevtsova I., “On the constants in the uniform and non-uniform versions of the Berry–Esseen inequality for Poisson random sums”, Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) on 2010 International Congress (18–20 Oct. 2010, Moscow), 1141–1144
[31] Shevtsova I., On the absolute constants in the Berry–Esseen type inequalities for identically distributed summands, arXiv: 1111.6554v1 [math.PR]
[32] Shevtsova I., “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Ann. Math. Inform., 39 (2012), 241–307 | MR | Zbl