Generalized hyperbolic laws as limit distributions for random sums
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 117-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general theorem is proved stating necessary and sufficient conditions for the convergence of the distributions of sums of a random number of independent identically distributed random variables to one-parameter variance-mean mixtures of normal laws. As a corollary, necessary and sufficient conditions for convergence of the distributions of sums of a random number of independent identically distributed random variables to generalized hyperbolic laws are obtained. Convergence rate estimates are presented for a particular case of special continuous time random walks generated by compound doubly stochastic Poisson processes.
Keywords: random sum; generalized hyperbolic distribution; generalized inverse Gaussian distribution; mixture of probability distributions; identifiable mixtures; additively closed family; convergence rate estimate.
@article{TVP_2013_58_1_a6,
     author = {V. Yu. Korolev},
     title = {Generalized hyperbolic laws as limit distributions for random sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {117--132},
     year = {2013},
     volume = {58},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a6/}
}
TY  - JOUR
AU  - V. Yu. Korolev
TI  - Generalized hyperbolic laws as limit distributions for random sums
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 117
EP  - 132
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a6/
LA  - ru
ID  - TVP_2013_58_1_a6
ER  - 
%0 Journal Article
%A V. Yu. Korolev
%T Generalized hyperbolic laws as limit distributions for random sums
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 117-132
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a6/
%G ru
%F TVP_2013_58_1_a6
V. Yu. Korolev. Generalized hyperbolic laws as limit distributions for random sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 117-132. http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a6/

[1] Seshadri V., “Halphen's laws”, Encyclopedia of Statistical Sciences, Update Volume, v. 1, eds. S. Kotz, C. B. Read, D. L. Banks, Wiley, New York, 1997, 302–306 | MR

[2] Sichel H. S., “Statistical evaluation of diamondiferous deposits”, J. South Afr. Inst. Min. Metall., 76 (1973), 235–243

[3] Korolev V. Yu., Bening V. E., Shorgin S. Ya., Matematicheskie osnovy teorii riska, 2-e izd., pererab. i dop., Fizmatlit, M., 2011, 620 pp. | Zbl

[4] Barndorff-Nielsen O. E., “Exponentially decreasing distributions for the logarithm of particle size”, Proc. Roy. Soc. Lond., Ser. A, 353 (1977), 401–419 | DOI

[5] Barndorff-Nielsen O. E., “Hyperbolic distributions and distributions of hyperbolae”, Scand. J. Statist., 5 (1978), 151–157 | MR | Zbl

[6] Barndorff-Nielsen O. E., “Models for non-Gaussian variation, with applications to turbulence”, Proc. Roy. Soc. Lond., Ser. A, 368 (1979), 501–520 | DOI | MR | Zbl

[7] Madan D. B., Seneta E., “The variance gamma (V.G.) model for share market return”, J. Business, 63 (1990), 511–524 | DOI

[8] Eberlein E., Keller U., “Hyperbolic Distributions in Finance”, Bernoulli, 1:3 (1995), 281–299 | DOI | Zbl

[9] Prause K., Modeling financial data using generalized hyperbolic distributions, Preprint No 48, Universität Freiburg, Institut für Mathematische Stochastik, Freiburg, 1997

[10] Carr P. P., Madan D. B., Chang E. C., “The Variance Gamma process and option pricing”, European Finance Rev., 2:1 (1998), 79–105 | DOI | Zbl

[11] Eberlein E., Keller U., Prause K., “New insights into smile, mispricing and value at risk: the hyperbolic model”, J. Business, 71 (1998), 371–405 | DOI

[12] Barndorff-Nielsen O. E., “Processes of normal inverse Gaussian type”, Finance Stoch., 2 (1998), 41–68 | DOI | MR | Zbl

[13] Eberlein E., Prause K., The generalized hyperbolic model: financial derivatives and risk measures, Preprint No 56, Universität Freiburg, Institut für Mathematische Stochastik, Freiburg, 1998 | MR | Zbl

[14] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, Fazis, M., 1998, 489 pp.

[15] Eberlein E., Application of generalized hyperbolic Lévy motions to finance, Preprint No 64, Universität Freiburg, Institut für Mathematische Stochastik, Freiburg, 1999

[16] Barndorff-Nielsen O. E., Blæsild P., Schmiegel J., “A parsimonious and universal description of turbulent velocity increments”, Eur. Phys. J. B, 41 (2004), 345–363 | DOI | MR

[17] Le Cam L., “Maximum likelihood; an introduction”, Int. Statist. Rev., 58 (1990), 153–171 | DOI | Zbl

[18] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summy nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949, 264 pp. | MR

[19] Barndorff-Nielsen O. E., Kent J., Sørensen M., “Normal variance-mean mixtures and $\footnotesize z$-distributions”, Int. Statist. Rev., 50:2 (1982), 145–159 | DOI | MR | Zbl

[20] Rényi A., “On the central limit theorem for the sum of a random number of independent random variables”, Acta Math. Acad. Sci. Hungar., 11 (1960), 97–102 | MR

[21] Gnedenko B. V., Fakhim Kh., “Ob odnoi teoreme perenosa”, Dokl. AN SSSR, 187:1 (1969), 15–17 | MR | Zbl

[22] Korolev V. Yu., Sokolov I. A., “Skoshennye raspredeleniya Styudenta, dispersionnye gamma-raspredeleniya i ikh obobscheniya kak asimptoticheskie approksimatsii”, Inform. i ee primen., 6:1 (2012), 3–11

[23] Korolev V. Yu., “O vzaimosvyazi obobschennogo raspredeleniya Styudenta i dispersionnogo gamma-raspredeleniya pri statisticheskom analize vyborok sluchainogo ob'ema”, Dokl. RAN, 445:6 (2012), 622–627 | MR | Zbl

[24] Gnedenko B. V., Korolev V. Yu., Random summation: Limit Theorems and Applications, CRC Press, Boca Raton, 1996, 267 pp. | MR | Zbl

[25] Teicher H., “Identifiability of mixtures”, Ann. Math. Statist., 32 (1961), 244–248 | DOI | MR | Zbl

[26] Korolev V. Yu., “Postpoenie modelei pasppedelenii bipzhevykh tsen ppi pomoschi metodov asimptoticheskoi teopii sluchainogo summipovaniya”, Obozpenie prikl. i ppomyshl. matem., sep. Fin. stpakh. matem., 4:1 (1997), 86–102

[27] Korolev V. Yu., “Asimptoticheskie svoistva ekstpemumov obobschennykh ppotsessov Koksa i ikh ppimenenie k nekotopym zadacham finansovoi matematiki”, Teopiya vepoyatn. i ee ppimen., 45:1 (2000), 182–194 | DOI | MR | Zbl

[28] Bening V., Korolev V., Generalized Poisson Models and Their Applications in Insurance and Finance, VSP, Utrecht, 2002, xix+434 pp. | Zbl

[29] Korolev V. Yu., Sokolov I. A., Matematicheskie modeli neodnorodnykh potokov ekstremalnykh sobytii, Torus, M., 2008, 191 pp.

[30] Korolev V. Yu., Veroyatnostno-statisticheskie metody dekompozitsii volatilnosti khaoticheskikh protsessov, Izd-vo Mosk. un-ta, M., 2011, 510 pp. | Zbl

[31] Korolev V. Yu., Skvortsova N. N. (Eds.), Stochastic Models of Structural Plasma Turbulence, VSP, Leiden, 2006, ix+400 pp. | MR

[32] Korolev V. Yu., Shevtsova I. G., Shorgin S. Ya., “O neravenstvakh tipa Berri–Esseena dlya puassonovskikh sluchainykh summ”, Inform. i ee primen., 5:3 (2011), 64–66 | MR

[33] Korolev V., Shevtsova I., “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105 | DOI | MR