On large deviations of maximum of a Cramér random walk and the queueing process
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 81-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Keywords: random walk; queueing process; Cramér condition; large deviations of maximum; conditional limit theorems.
@article{TVP_2013_58_1_a5,
     author = {M. V. Kozlov},
     title = {On large deviations of maximum of a {Cram\'er} random walk and the queueing process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {81--116},
     year = {2013},
     volume = {58},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a5/}
}
TY  - JOUR
AU  - M. V. Kozlov
TI  - On large deviations of maximum of a Cramér random walk and the queueing process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 81
EP  - 116
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a5/
LA  - ru
ID  - TVP_2013_58_1_a5
ER  - 
%0 Journal Article
%A M. V. Kozlov
%T On large deviations of maximum of a Cramér random walk and the queueing process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 81-116
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a5/
%G ru
%F TVP_2013_58_1_a5
M. V. Kozlov. On large deviations of maximum of a Cramér random walk and the queueing process. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 81-116. http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a5/

[1] Borovkov A. A., Korshunov D. A., “Veroyatnosti bolshikh uklonenii odnomernykh tsepei Markova. Chast 2. Dostatsionarnye raspredeleniya v eksponentsialnom sluchae”, Teoriya veroyatn. i ee primen., 45:3 (2000), 437–468 | DOI | MR | Zbl

[2] Borovkov A. A., Ergodichnost i ustoichivost sluchainykh protsessov, URSS, M., 1999, 440 pp. | MR

[3] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 751 pp.

[4] Shklyaev A. V., “Predelnye teoremy dlya sluchainogo bluzhdaniya pri uslovii bolshogo ukloneniya maksimuma”, Teoriya veroyatn. i ee primen., 55:3 (2010), 590–598 | DOI | MR

[5] Petrov V. V., “O veroyatnostyakh bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 10:2 (1965), 310–322 | MR | Zbl

[6] Kozlov M. V., “O bolshikh ukloneniyakh strogo dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede s geometricheskim raspredeleniem chisla potomkov”, Teoriya veroyatn. i ee primen., 54:3 (2009), 439–465 | DOI | MR | Zbl

[7] Borovkov A. A., “O preobrazovanii Kramera, bolshikh ukloneniyakh v granichnykh zadachakh i uslovnom printsipe invariantnosti”, Sib. matem. zhurn., 36:3 (1995), 493–509 | MR | Zbl

[8] Borovkov A. A., “Ob uslovnykh raspredeleniyakh, svyazannykh s bolshimi ukloneniyami”, Sib. matem. zhurn., 37:4 (1996), 732–744 | MR | Zbl

[9] Poleschuk O. M., Bolshie ukloneniya i uslovnye predelnye teoremy, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1989

[10] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[11] Shklyaev A. V., Bolshie ukloneniya i predelnye teoremy dlya nekotorykh funktsionalov ot sluchainogo bluzhdaniya, Dis. ... kand. fiz.-matem. nauk, MGU, M., 2011

[12] Embrechts P., Klüppelberg C., Mikosh T., Modelling Extremal Events, Appl. Math. (N.Y.), 33, Springer-Verlag, Berlin, 1997, 645 pp. | MR | Zbl

[13] Asmussen S., “Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve process and the GI/G/1 queue”, Adv. Appl. Probab., 14:1 (1982), 143–170 | DOI | MR | Zbl