Optimal stopping problems for a Brownian motion with disorder on a segment
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 193-200 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider optimal stopping problems for a Brownian motion and a geometric Brownian motion with “disorder”, assuming that the moment of disorder is uniformly distributed on a finite segment. The optimal stopping rules are found as the times of first hitting of the time-dependent boundaries which are characterized by certain integral equations by some Markov process (the Shiryaev–Roberts statistic). The problems considered are related to mathematical finance and can be applied in questions of choosing the optimal time to sell an asset with the changing trend.
Keywords: optimal stopping problems; disorder detection problems; Shiryaev–Roberts statistic.
@article{TVP_2013_58_1_a10,
     author = {M. V. Zhitlukhin and A. N. Shiryaev},
     title = {Optimal stopping problems for a {Brownian} motion with disorder on~a~segment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {193--200},
     year = {2013},
     volume = {58},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a10/}
}
TY  - JOUR
AU  - M. V. Zhitlukhin
AU  - A. N. Shiryaev
TI  - Optimal stopping problems for a Brownian motion with disorder on a segment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 193
EP  - 200
VL  - 58
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a10/
LA  - ru
ID  - TVP_2013_58_1_a10
ER  - 
%0 Journal Article
%A M. V. Zhitlukhin
%A A. N. Shiryaev
%T Optimal stopping problems for a Brownian motion with disorder on a segment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 193-200
%V 58
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a10/
%G ru
%F TVP_2013_58_1_a10
M. V. Zhitlukhin; A. N. Shiryaev. Optimal stopping problems for a Brownian motion with disorder on a segment. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 1, pp. 193-200. http://geodesic.mathdoc.fr/item/TVP_2013_58_1_a10/

[1] Zhitlukhin M. V., Shiryaev A. N., “Baiesovskie zadachi o razladke na filtrovannykh veroyatnostnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 57:3 (2012), 453–470 | DOI

[2] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl

[3] Shiryaev A. N., “Ob optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 8:1 (1963), 26–51 | Zbl

[4] Shiryaev A. N., Statisticheskii posledovatelnyi analiz, Nauka, M., 1976, 272 pp. | MR | Zbl

[5] Beibel M., Lerche H. R., “A new look at optimal stopping problems related to mathematical finance”, Statist. Sinica, 7:1 (1997), 93–108 | MR | Zbl

[6] Ekström E., Lindberg C., “Optimal closing of a momentum trade”, J. Appl. Probab. (to appear)

[7] Feinberg E. A., Shiryaev A. N., “Quickest detection of drift change for Brownian motion in generalized Bayesian and minimax settings”, Statist. Decisions, 24:4 (2006), 445–470 | DOI | MR | Zbl

[8] Gapeev P. V., Peskir G., “The Wiener disorder problem with finite horizon”, Stochastic Process. Appl., 116:12 (2006), 1770–1791 | DOI | MR | Zbl

[9] Matsumoto H., Yor M., “Exponential functionals of Brownian motion. I: Probability laws at fixed time”, Probab. Surv., 2 (2005), 312–347 | DOI | MR | Zbl

[10] Shiryaev A., Novikov A. A., “On a stochastic version of the trading rule “Buy and Hold””, Statist. Decisions, 26:4 (2008), 289–302 | DOI | MR | Zbl