On Chernoff’s hypotheses testing problem for the drift of a Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 778-788 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains detailed exposition of the results presented in the short communication [M. V. Zhitlukhin and A. A. Muravlev, Russian Math. Surveys, 66 (2011), pp. 1012–1013]. We consider Chernoff’s problem of sequential testing of two hypotheses about the sign of the drift of a Brownian motion under the assumption that it is normally distributed. We obtain an integral equation which characterizes the optimal decision rule and find its solution numerically.
Keywords: Chernoff’s problem; sequential hypotheses testing; optimal stopping problem; integral equations.
@article{TVP_2012_57_4_a9,
     author = {M. V. Zhitlukhin and A. A. Muravlev},
     title = {On {Chernoff{\textquoteright}s} hypotheses testing problem for the drift of a {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {778--788},
     year = {2012},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a9/}
}
TY  - JOUR
AU  - M. V. Zhitlukhin
AU  - A. A. Muravlev
TI  - On Chernoff’s hypotheses testing problem for the drift of a Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 778
EP  - 788
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a9/
LA  - ru
ID  - TVP_2012_57_4_a9
ER  - 
%0 Journal Article
%A M. V. Zhitlukhin
%A A. A. Muravlev
%T On Chernoff’s hypotheses testing problem for the drift of a Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 778-788
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a9/
%G ru
%F TVP_2012_57_4_a9
M. V. Zhitlukhin; A. A. Muravlev. On Chernoff’s hypotheses testing problem for the drift of a Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 778-788. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a9/

[1] Chernoff H., “Sequential tests for the mean of a normal distribution”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, v. 1, Univ. of California Press, Berkeley, 1961, 79–91 | MR

[2] Breakwell J., Chernoff H., “Sequential tests for the mean of a normal distribution, II (large $t$)”, Ann. Math. Statist., 35:1 (1964), 162–173 | DOI | MR | Zbl

[3] Chernoff H., “Sequential tests for the mean of a normal distribution, III (small $t$)”, Ann. Math. Statist., 36:1 (1965), 28–54 | DOI | MR | Zbl

[4] Chernoff H., “Sequential tests for the mean of a normal distribution, IV (discrete case)”, Ann. Math. Statist., 36:1 (1965), 55–68 | DOI | MR | Zbl

[5] Peskir G., “A change-of-variable formula with local time on curves”, J. Theoret. Probab., 18 (2005), 499–535 | DOI | MR | Zbl

[6] Peskir G., “On the American option problem”, Math. Finance, 15 (2005), 169–181 | DOI | MR | Zbl

[7] Peskir G., Shiryaev A., Optimal Stopping and Free-Boundary Problems, Birkhäuser, 2006, 500 pp. | MR | Zbl

[8] Dubins L. E., Shepp L. A., Shiryaev A. N., “Optimalnye pravila ostanovki i maksimalnye neravenstva dlya protsessov Besselya”, Teoriya veroyatn. i ee primen., 38:2 (1993), 288–330 | MR | Zbl

[9] Zhitlukhin M. V., Muravlëv A. A., “Ob uravneniyakh dlya optimalnykh granits v zadache Chernova razlicheniya dvukh gipotez”, Uspekhi matem. nauk, 66:5 (2011), 183–184 | MR | Zbl

[10] Zhitlukhin M. V., Shiryaev A. N., “Baiesovskie zadachi o razladke na filtrovannykh veroyatnostnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 57:3 (2012), 453–470

[11] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974, 696 pp. | MR | Zbl