Robustness of sign tests for testing hypotheses about order of autoregression
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 761-768
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Observations of autoregression are contaminated by additive isolated outliers with an unknown random distribution. Intensity of the outliers $\gamma_n$ is $\min(1,n^{-1/2}\gamma)$, where $\gamma \geqq 0$ is unknown, and $n$ is the data size. Robustness of sign tests for hypotheses about order of autoregression is considered. The result is formulated in terms of equicontinuity of limiting power with respect to $\gamma$ at $\gamma=0$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
robustness against outliers; equicontinuity of power.
                    
                  
                
                
                @article{TVP_2012_57_4_a7,
     author = {M. V. Boldin},
     title = {Robustness of sign tests for testing hypotheses about order of autoregression},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {761--768},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a7/}
}
                      
                      
                    M. V. Boldin. Robustness of sign tests for testing hypotheses about order of autoregression. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 761-768. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a7/
