@article{TVP_2012_57_4_a5,
author = {Yu. Davydov and V. Paulauskas},
title = {A simple approach in limit theorems for linear random processes and fields with continuous time},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {724--743},
year = {2012},
volume = {57},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/}
}
TY - JOUR AU - Yu. Davydov AU - V. Paulauskas TI - A simple approach in limit theorems for linear random processes and fields with continuous time JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 724 EP - 743 VL - 57 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/ LA - en ID - TVP_2012_57_4_a5 ER -
Yu. Davydov; V. Paulauskas. A simple approach in limit theorems for linear random processes and fields with continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 724-743. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/
[1] Andersen T. G., Davis R. A., Kreiß J.-P., Mikosch T. (eds.), Handbook of Financial Time Series, Springer, Berlin, 2009, 1050 pp.
[2] Banys P., Davydov Yu., Paulauskas V., “Remarks on the SLLN for linear random fields”, Statist. Probab. Lett., 80 (2010), 489–496 | DOI | MR | Zbl
[3] Beveridge S., Nelson C. R., “A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the “business cycle””, J. Monetary Economics, 7 (1981), 151–174 | DOI
[4] Brockwell P. J., “Lévy-driven CARMA processes”, Ann. Inst. Statist. Math., 53 (2001), 113–124 | DOI | MR | Zbl
[5] Gordin M. I., “O tsentralnoi predelnoi teoreme dlya statsionarnykh protsessov”, Dokl. AN SSSR, 188:4 (1969), 739–741 | MR | Zbl
[6] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.
[7] Marinucci D., Poghosyan S., “Asymptotics for linear random fields”, Statist. Probab. Lett., 51 (2001), 131–141 | DOI | MR | Zbl
[8] Paulauskas V., “On Beveridge–Nelson decomposition and limit theorems for linear random fields”, J. Multivariate Anal., 101 (2010), 621–639 | DOI | MR | Zbl
[9] Phillips P. C. B., Solo V., “Asymptotics for linear processes”, Ann. Statist., 20 (1992), 971–1001 | DOI | MR | Zbl