A simple approach in limit theorems for linear random processes and fields with continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 724-743 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider random linear processes and fields with continuous time or space argument and demonstrate how the analogue of Beveridge–Nelson decomposition can be applied to prove limit theorems for integrals of such processes and fields.
Keywords: limit theorems; linear random processes and fields; Beveridge–Nelson decomposition.
@article{TVP_2012_57_4_a5,
     author = {Yu. Davydov and V. Paulauskas},
     title = {A simple approach in limit theorems for linear random processes and fields with continuous time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {724--743},
     year = {2012},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/}
}
TY  - JOUR
AU  - Yu. Davydov
AU  - V. Paulauskas
TI  - A simple approach in limit theorems for linear random processes and fields with continuous time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 724
EP  - 743
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/
LA  - en
ID  - TVP_2012_57_4_a5
ER  - 
%0 Journal Article
%A Yu. Davydov
%A V. Paulauskas
%T A simple approach in limit theorems for linear random processes and fields with continuous time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 724-743
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/
%G en
%F TVP_2012_57_4_a5
Yu. Davydov; V. Paulauskas. A simple approach in limit theorems for linear random processes and fields with continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 724-743. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a5/

[1] Andersen T. G., Davis R. A., Kreiß J.-P., Mikosch T. (eds.), Handbook of Financial Time Series, Springer, Berlin, 2009, 1050 pp.

[2] Banys P., Davydov Yu., Paulauskas V., “Remarks on the SLLN for linear random fields”, Statist. Probab. Lett., 80 (2010), 489–496 | DOI | MR | Zbl

[3] Beveridge S., Nelson C. R., “A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the “business cycle””, J. Monetary Economics, 7 (1981), 151–174 | DOI

[4] Brockwell P. J., “Lévy-driven CARMA processes”, Ann. Inst. Statist. Math., 53 (2001), 113–124 | DOI | MR | Zbl

[5] Gordin M. I., “O tsentralnoi predelnoi teoreme dlya statsionarnykh protsessov”, Dokl. AN SSSR, 188:4 (1969), 739–741 | MR | Zbl

[6] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[7] Marinucci D., Poghosyan S., “Asymptotics for linear random fields”, Statist. Probab. Lett., 51 (2001), 131–141 | DOI | MR | Zbl

[8] Paulauskas V., “On Beveridge–Nelson decomposition and limit theorems for linear random fields”, J. Multivariate Anal., 101 (2010), 621–639 | DOI | MR | Zbl

[9] Phillips P. C. B., Solo V., “Asymptotics for linear processes”, Ann. Statist., 20 (1992), 971–1001 | DOI | MR | Zbl