Stability problems in Cram\'er-type characterization in case of I.I.D. Summands
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 701-723

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability property in Cramér’s characterization of the normal law is considered in the case of identically distributed summands. As opposite results, instability is shown with respect to strong distances including the entropic distance to normality (addressing a question of M. Kac).
Keywords: Cramér’s theorem; Cramér’s characterization of the normal law; stability problems.
@article{TVP_2012_57_4_a4,
     author = {S. G. Bobkov and G. P. Chistyakov and F. G\"otze},
     title = {Stability problems in {Cram\'er-type} characterization in case of {I.I.D.} {Summands}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {701--723},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a4/}
}
TY  - JOUR
AU  - S. G. Bobkov
AU  - G. P. Chistyakov
AU  - F. Götze
TI  - Stability problems in Cram\'er-type characterization in case of I.I.D. Summands
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 701
EP  - 723
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a4/
LA  - en
ID  - TVP_2012_57_4_a4
ER  - 
%0 Journal Article
%A S. G. Bobkov
%A G. P. Chistyakov
%A F. Götze
%T Stability problems in Cram\'er-type characterization in case of I.I.D. Summands
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 701-723
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a4/
%G en
%F TVP_2012_57_4_a4
S. G. Bobkov; G. P. Chistyakov; F. Götze. Stability problems in Cram\'er-type characterization in case of I.I.D. Summands. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 701-723. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a4/