On the upper hedging price of contingent claims
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 657-681 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper analyzes the problem of finding the upper hedging prices of a contingent claim in a semimartingale model of a financial market. The authors also study the relation of the hedging prices introduced under different requirements on arbitrage.
Keywords: semimartingale market model; upper hedging price; contingent claim; duality.
@article{TVP_2012_57_4_a2,
     author = {R. V. Khasanov},
     title = {On the upper hedging price of contingent claims},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {657--681},
     year = {2012},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a2/}
}
TY  - JOUR
AU  - R. V. Khasanov
TI  - On the upper hedging price of contingent claims
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 657
EP  - 681
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a2/
LA  - ru
ID  - TVP_2012_57_4_a2
ER  - 
%0 Journal Article
%A R. V. Khasanov
%T On the upper hedging price of contingent claims
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 657-681
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a2/
%G ru
%F TVP_2012_57_4_a2
R. V. Khasanov. On the upper hedging price of contingent claims. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 657-681. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a2/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Fizmatlit, M., 2005, 384 pp.

[2] Rokhlin D. B., “Ekvivalentnye supermartingalnye plotnosti i mery v modelyakh s diskretnym vremenem i beskonechnym gorizontom”, Teoriya veroyatn. i ee primen., 53:4 (2008), 704–731

[3] Khasanov R. V., “O maksimizatsii poleznosti s neogranichennym sluchainym vkladom”, Vestn. Mosk. un-ta (to appear)

[4] Bellini F., Frittelli M., “On the existence of minimax martingale measures”, Math. Finance, 12:1 (2002), 1–21

[5] Biagini S., Frittelli M., “On the super replication price of unbounded claims”, Ann. Appl. Probab., 14:4 (2004), 1970–1991

[6] Brannath W., Schachermayer W., “A bipolar theorem for $L^0_+(\Omega,\mathcal{F},\mathbb{P})$”, Lecture Notes in Math., 1709 (1999), 349–354

[7] Cvitanic J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272

[8] Delbaen F., Schachermayer W., “The no-arbitrage property under a change of numéraire”, Stochastics and Stochastics Rep., 53 (1995), 213–226

[9] Delbaen F., Schachermayer W., “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–260

[10] Hugonnier J., Kramkov D. O., “Optimal investment with random endowments in incomplete markets”, Ann. Appl. Probab., 14:2 (2004), 845–864

[11] Kabanov Yu. M., “On the FTAP of Kreps–Delbaen–Schachermayer”, Statistics and Control of Stochastic Processes (Moscow, 1995/1996), World Sci. Publishing, River Edge, 1997, 191–203

[12] Karatzas I., Kardaras C., “The numéraire portfolio in semimartingale financial models”, Finance Stoch., 11:11 (2007), 447–493

[13] Kardaras K., “Market viability via arbitrage of the first kind”, Finance Stoch., 16:4 (2012), 651–667

[14] Kardaras K., On the closure in the Emery topology of semimartingale wealth-process sets, 20 pp., arXiv: 1108.0945v2 [q-fin.PM]

[15] Kramkov D. O., Schachermayer W., “The asymptotic elasticity of utility functions and optimal investment in incomplete markets”, Ann. Appl. Probab., 9:3 (1999), 904–950

[16] Rockafellar R. T., “Extension of Fenchel's duality theorem for convex functions”, Duke Math. J., 33:1 (1966), 81–89

[17] Stricker C., Yan J.-A., “Some remarks on the optional decomposition theorem”, Lecture Notes in Math., 1686, 1998, 56–66

[18] Takaoka K., On the condition of no unbounded profit with bounded risk, Working paper No 131, Graduate School of Commerce and Management, Hitotsubashi University

[19] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66