@article{TVP_2012_57_4_a14,
author = {J. Stoyanov and G. D. Lin},
title = {Hardy{\textquoteright}s condition in the moment problem for probability distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {811--820},
year = {2012},
volume = {57},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a14/}
}
J. Stoyanov; G. D. Lin. Hardy’s condition in the moment problem for probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 811-820. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a14/
[1] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. | MR
[2] Berg C., “The cube of a normal distribution is indeterminate”, Ann. Probab., 16:2 (1988), 910–913 | DOI | MR | Zbl
[3] Carleman T., Les fonctions quasi-analytiques, Gauthier-Villars, Paris, 1926, 115 pp. | Zbl
[4] Carleman T., Hardy G. H., “Fourier's series and analytic functions”, Proc. Roy. Soc. London (A), 101 (1922), 124–133 ; Reprinted in: Collected Papers of G. H. Hardy, v. IV, Clarendon Press, Oxford, 1969, 624–633 | DOI | Zbl
[5] Chihara T. S., “On indeterminate Hamburger moment problems”, Pacific J. Math., 27:3 (1968), 475–484 | DOI | MR | Zbl
[6] Chow Y. S., Teicher H., Probability Theory: Independence, Interchangeability, Martingales, Springer, New York, 1997, 488 pp. | MR
[7] De Jeu M., “Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights”, Ann. Probab., 31:3 (2003), 1205–1227 | DOI | MR | Zbl
[8] Diaconis P., Freedman D., “An elementary proof of Stirling's formula”, Amer. Math. Monthly, 93:2 (1986), 123–125 | DOI | MR | Zbl
[9] Diaconis P., G. H. Hardy and probability???, Bull. London Math. Soc., 34:4 (2002), 385–402 | DOI | MR | Zbl
[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1962, 1100 pp. | MR
[11] Hardy G. H., “On Stieltjes' ‘problème des moments’”, Messenger of Math., 46 (1917), 175–182 ; Reprinted in: Collected Papers of G. H. Hardy, v. VII, Oxford Univ. Press, Oxford, 1979, 75–83 | Zbl | MR
[12] Hardy G. H., “On Stieltjes' ‘problème des moments’ (continued)”, Messenger of Math., 47 (1918), 81–88; Reprinted in: Collected Papers of G. H. Hardy, v. VII, Oxford Univ. Press, Oxford, 1979, 84–91 | MR
[13] Heyde C. C., “Some remarks on the moment problem, I”, Quart. J. Math. Oxford, 14:1 (1963), 91–96 | DOI | MR | Zbl
[14] Kleiber C., Stoyanov J., “Multivariate distributions and the moment problem”, J. Multivariate Anal., 113:1 (2013), 7–18 | DOI | MR | Zbl
[15] Koosis P., The Logarithmic Integral, v. I, Cambridge Univ. Press, Cambridge, 1988, 606 pp. | MR | Zbl
[16] Lin G. D., “On the moment problems”, Statist. Probab. Lett., 35:1 (1997), 85–90 ; Erratum, 50 (2000), 205 | DOI | MR | Zbl | DOI | MR
[17] Pakes A. G., “Remarks on converse Carleman and Krein criteria for the classical moment problem”, J. Austral. Math. Soc., 71:1 (2001), 81–104 | DOI | MR | Zbl
[18] Pakes A. G., Hung W.-L., Wu J.-W., “Criteria for the unique determination of probability distributions by moments”, Austral. N. Z. J. Statist., 43:1 (2001), 101–111 | DOI | MR | Zbl
[19] Putinar M., Schmüdgen K., “Multivariate determinateness”, Indiana Univ. Math. J., 57:6 (2008), 2931–2968 | DOI | MR
[20] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR
[21] Shohat J. A., Tamarkin J. D., The Problem of Moments, Amer. Math. Soc., Providence, 1943, 140 pp. | MR | Zbl
[22] Stoyanov J., Counterexamples in Probability, Wiley, Chichester, 1997, 342 pp. | MR | Zbl
[23] Stoyanov J., “Krein condition in probabilistic moment problems”, Bernoulli, 6:5 (2000), 939–949 | DOI | MR | Zbl
[24] Stoyanov J., “Stieltjes classes for moment-indeterminate probability distributions”, J. Appl. Probab. A, 41 (2004), 281–294 | DOI | MR
[25] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948, 479 pp.
[26] Uitteker E. T., Kurs sovremennogo analiza, v. I, URSS, M., 2002, 342 pp.; т. II, 515 с.