Hardy’s condition in the moment problem for probability distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 811-820 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The starting point of this article consists of two papers by G. H. Hardy, published in 1917 and 1918, in which the basic condition used by the present authors first appears. Translated into probabilistic terms, Hardy’s condition can be written as follows: $\mathbf{E}[e^{c\sqrt{X}}]<\infty$, where $X$ is a nonnegative random variable and $c>0$ a constant. Assuming this condition, it follows that all moments of $X$ are finite and the distribution of $X$ is uniquely determined by the moments (i.e., it is $M$-determinate). Moreover, Hardy’s condition is weaker than Cramer’s condition, which requires the existence of a moment generating function of $X$. Hardy’s condition allows the authors to prove that the constant $1/2$ (equal to the square root) is the best possible for $X$ to be $M$-determinate. They also describe the relationship between Hardy’s condition and properties of the moments of $X$, and establish a result concerning the moment determinacy of an arbitrary multivatiate distribution.
Mots-clés : distribution; moments; moment problem; Hardy’s condition; Cramér’s condition; Carleman’s condition; Krein’s condition; Lin’s condition.
@article{TVP_2012_57_4_a14,
     author = {J. Stoyanov and G. D. Lin},
     title = {Hardy{\textquoteright}s condition in the moment problem for probability distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {811--820},
     year = {2012},
     volume = {57},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a14/}
}
TY  - JOUR
AU  - J. Stoyanov
AU  - G. D. Lin
TI  - Hardy’s condition in the moment problem for probability distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 811
EP  - 820
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a14/
LA  - en
ID  - TVP_2012_57_4_a14
ER  - 
%0 Journal Article
%A J. Stoyanov
%A G. D. Lin
%T Hardy’s condition in the moment problem for probability distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 811-820
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a14/
%G en
%F TVP_2012_57_4_a14
J. Stoyanov; G. D. Lin. Hardy’s condition in the moment problem for probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 811-820. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a14/

[1] Akhiezer N. I., Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. | MR

[2] Berg C., “The cube of a normal distribution is indeterminate”, Ann. Probab., 16:2 (1988), 910–913 | DOI | MR | Zbl

[3] Carleman T., Les fonctions quasi-analytiques, Gauthier-Villars, Paris, 1926, 115 pp. | Zbl

[4] Carleman T., Hardy G. H., “Fourier's series and analytic functions”, Proc. Roy. Soc. London (A), 101 (1922), 124–133 ; Reprinted in: Collected Papers of G. H. Hardy, v. IV, Clarendon Press, Oxford, 1969, 624–633 | DOI | Zbl

[5] Chihara T. S., “On indeterminate Hamburger moment problems”, Pacific J. Math., 27:3 (1968), 475–484 | DOI | MR | Zbl

[6] Chow Y. S., Teicher H., Probability Theory: Independence, Interchangeability, Martingales, Springer, New York, 1997, 488 pp. | MR

[7] De Jeu M., “Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights”, Ann. Probab., 31:3 (2003), 1205–1227 | DOI | MR | Zbl

[8] Diaconis P., Freedman D., “An elementary proof of Stirling's formula”, Amer. Math. Monthly, 93:2 (1986), 123–125 | DOI | MR | Zbl

[9] Diaconis P., G. H. Hardy and probability???, Bull. London Math. Soc., 34:4 (2002), 385–402 | DOI | MR | Zbl

[10] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1962, 1100 pp. | MR

[11] Hardy G. H., “On Stieltjes' ‘problème des moments’”, Messenger of Math., 46 (1917), 175–182 ; Reprinted in: Collected Papers of G. H. Hardy, v. VII, Oxford Univ. Press, Oxford, 1979, 75–83 | Zbl | MR

[12] Hardy G. H., “On Stieltjes' ‘problème des moments’ (continued)”, Messenger of Math., 47 (1918), 81–88; Reprinted in: Collected Papers of G. H. Hardy, v. VII, Oxford Univ. Press, Oxford, 1979, 84–91 | MR

[13] Heyde C. C., “Some remarks on the moment problem, I”, Quart. J. Math. Oxford, 14:1 (1963), 91–96 | DOI | MR | Zbl

[14] Kleiber C., Stoyanov J., “Multivariate distributions and the moment problem”, J. Multivariate Anal., 113:1 (2013), 7–18 | DOI | MR | Zbl

[15] Koosis P., The Logarithmic Integral, v. I, Cambridge Univ. Press, Cambridge, 1988, 606 pp. | MR | Zbl

[16] Lin G. D., “On the moment problems”, Statist. Probab. Lett., 35:1 (1997), 85–90 ; Erratum, 50 (2000), 205 | DOI | MR | Zbl | DOI | MR

[17] Pakes A. G., “Remarks on converse Carleman and Krein criteria for the classical moment problem”, J. Austral. Math. Soc., 71:1 (2001), 81–104 | DOI | MR | Zbl

[18] Pakes A. G., Hung W.-L., Wu J.-W., “Criteria for the unique determination of probability distributions by moments”, Austral. N. Z. J. Statist., 43:1 (2001), 101–111 | DOI | MR | Zbl

[19] Putinar M., Schmüdgen K., “Multivariate determinateness”, Indiana Univ. Math. J., 57:6 (2008), 2931–2968 | DOI | MR

[20] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR

[21] Shohat J. A., Tamarkin J. D., The Problem of Moments, Amer. Math. Soc., Providence, 1943, 140 pp. | MR | Zbl

[22] Stoyanov J., Counterexamples in Probability, Wiley, Chichester, 1997, 342 pp. | MR | Zbl

[23] Stoyanov J., “Krein condition in probabilistic moment problems”, Bernoulli, 6:5 (2000), 939–949 | DOI | MR | Zbl

[24] Stoyanov J., “Stieltjes classes for moment-indeterminate probability distributions”, J. Appl. Probab. A, 41 (2004), 281–294 | DOI | MR

[25] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948, 479 pp.

[26] Uitteker E. T., Kurs sovremennogo analiza, v. I, URSS, M., 2002, 342 pp.; т. II, 515 с.