Linear Hamiltonian systems under microscopic random influence
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 794-799 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that a linear Hamiltonian system has too many invariant measures; thus the problem of convergence to Gibbs measure makes no sense. We consider linear Hamiltonian systems of arbitrary finite dimension and prove that, under the condition that one distinguished coordinate is subjected to dissipation and white noise, for “almost any” Hamiltonians and “almost any” initial conditions, there exists a unique limiting distribution. Moreover, this distribution is Gibbsian with the temperature depending on the dissipation and on the variance of the white noise.
Keywords: Gibbs measure; convergence to equilibrium; Hamiltonian systems; white noise.
@article{TVP_2012_57_4_a11,
     author = {A. A. Lykov and V. A. Malyshev and S. A. Muzychka},
     title = {Linear {Hamiltonian} systems under microscopic random influence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {794--799},
     year = {2012},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a11/}
}
TY  - JOUR
AU  - A. A. Lykov
AU  - V. A. Malyshev
AU  - S. A. Muzychka
TI  - Linear Hamiltonian systems under microscopic random influence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 794
EP  - 799
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a11/
LA  - ru
ID  - TVP_2012_57_4_a11
ER  - 
%0 Journal Article
%A A. A. Lykov
%A V. A. Malyshev
%A S. A. Muzychka
%T Linear Hamiltonian systems under microscopic random influence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 794-799
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a11/
%G ru
%F TVP_2012_57_4_a11
A. A. Lykov; V. A. Malyshev; S. A. Muzychka. Linear Hamiltonian systems under microscopic random influence. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 794-799. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a11/

[1] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1996, 400 pp. | MR | Zbl

[2] Lykov A. A., Malyshev V. A., “Harmonic chain with weak dissipation”, Markov Processes and Related Fields, 18:4 (2012), 721–729

[3] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970, 534 pp. | MR

[4] Gantmakher F. R., Teoriya matrits, Fizmatlit, M., 2004, 559 pp.

[5] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[6] Rieder Z., Lebowitz J. L., Lieb E., “Properties of a harmonic crystal in a stationary nonequilibrium state”, J. Math. Phys., 8:5 (1967), 1073–1078 | DOI | MR

[7] Spohn H., Lebowitz J. L., “Stationary non-equilibrium states of infinite harmonic systems”, Comm. Math. Phys., 54:2 (1977), 97–120 | DOI | MR