Multivariate extremes of random properties of particles in supercritical branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 788-794 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author considers a supercritical Galton–Watson process $(Z_n)_{n\geqslant0}$ initiated by a single ancestor in which each particle has at least one descendant. It is further assumed that each particle is assigned $p\geqslant2$ random properties and that for different particles these properties are i.i.d. Denote by $M_i(n)$, $i=1,\dots,p$, the maximum of the ith property in the $n$th generation. Assuming that $Z_n/\mathbb{E}Z_n$ converges in mean to a random variable $W$ and that the joint distribution of properties of a particle belongs to the maximum domain of attraction of a multidimensional nondegenerate law with distribution function $G$. Then it is proved that the vector $M_n:=(M_1(n),\dots,M_p(n))$, properly normalized and centered, converges in distribution. The limit law is given by the distribution function $\varphi(-\log G)$, where $\varphi(t):=\mathbb{E}e^{-tW}$, $t\geqslant0$. Without the assumptions stated above a more general result is also obtained: $M_n$, properly normalized and centered, converges in distribution if and only if the limit distribution function solves the functional equation (explicitly given in the paper).
Keywords: supercritical branching processes; maxima; multivariate extremes; copulas; max-semistable distributions.
@article{TVP_2012_57_4_a10,
     author = {A. V. Lebedev},
     title = {Multivariate extremes of random properties of particles in supercritical branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {788--794},
     year = {2012},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Multivariate extremes of random properties of particles in supercritical branching processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 788
EP  - 794
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/
LA  - ru
ID  - TVP_2012_57_4_a10
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Multivariate extremes of random properties of particles in supercritical branching processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 788-794
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/
%G ru
%F TVP_2012_57_4_a10
A. V. Lebedev. Multivariate extremes of random properties of particles in supercritical branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 788-794. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/

[1] Arnold B. C., Villasenor J. A., “The tallest man in the world”, Statistical Theory and Applications, Papers in honor of H. A. David, Springer, New York, 1996, 81–88 | DOI | MR | Zbl

[2] Pakes A. G., “Extreme order statistics on Galton–Watson trees”, Metrika, 47:2 (1998), 95–117 | DOI | MR | Zbl

[3] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966, 355 pp.

[4] Yanev G. P., “Revisiting offspring maxima in branching processes”, Pliska Stud. Math. Bulgar., 18 (2007), 401–426 | MR

[5] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp. | MR

[6] Galambosh Ya. I., Asimptoticheskaya teoriya ekstremalnykh poryadkovykh statistik, Nauka, M., 1984, 303 pp. | MR

[7] Lebedev A. V., “Predelnye zakony dlya maksimumov na nadkriticheskikh vetvyaschikhsya protsessakh”, Obozrenie prikl. promyshl. matem., 11:4 (2004), 867–868

[8] Lebedev A. V., “Maksimumy sluchainykh priznakov chastits v nadkriticheskikh vetvyaschikhsya protsessakh”, Vestnik MGU. Ser. 1. Matem. mekh., 2008, no. 5, 3–6

[9] Lebedev A. V., “Maxima of random particles scores in Markov branching processes with continuous time”, Extremes, 11:2 (2008), 203–216 | DOI | MR | Zbl

[10] Nelsen R., “An introduction to copulas”, Lecture Notes in Statis., 139, 1999, 1–216 | MR

[11] McNeil A. J., Frey R., Embrechts P., Quantitative Risk Management, Princeton Univ. Press, Princeton, 2005, 538 pp. | MR | Zbl

[12] Grinevich I. V., “Maks-poluustoichivye predelnye raspredeleniya, otvechayuschie lineinoi i stepennoi normirovke”, Teoriya veroyatn. i ee primen., 37:4 (1992), 774–776

[13] Pancheva E., “Multivariate max-semistable distributions”, Teoriya veroyatn. i ee primen., 37:4 (1992), 794–795

[14] Canto E Castro L., de Haan L., Temido M. G., “Rarely observed sample maxima”, Teoriya veroyatn. i ee primen., 45:4 (2000), 787–799 | MR