Multivariate extremes of random properties of particles in supercritical branching processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 788-794

Voir la notice de l'article provenant de la source Math-Net.Ru

The author considers a supercritical Galton–Watson process $(Z_n)_{n\geqslant0}$ initiated by a single ancestor in which each particle has at least one descendant. It is further assumed that each particle is assigned $p\geqslant2$ random properties and that for different particles these properties are i.i.d. Denote by $M_i(n)$, $i=1,\dots,p$, the maximum of the ith property in the $n$th generation. Assuming that $Z_n/\mathbb{E}Z_n$ converges in mean to a random variable $W$ and that the joint distribution of properties of a particle belongs to the maximum domain of attraction of a multidimensional nondegenerate law with distribution function $G$. Then it is proved that the vector $M_n:=(M_1(n),\dots,M_p(n))$, properly normalized and centered, converges in distribution. The limit law is given by the distribution function $\varphi(-\log G)$, where $\varphi(t):=\mathbb{E}e^{-tW}$, $t\geqslant0$. Without the assumptions stated above a more general result is also obtained: $M_n$, properly normalized and centered, converges in distribution if and only if the limit distribution function solves the functional equation (explicitly given in the paper).
Keywords: supercritical branching processes; maxima; multivariate extremes; copulas; max-semistable distributions.
@article{TVP_2012_57_4_a10,
     author = {A. V. Lebedev},
     title = {Multivariate extremes of random properties of particles in supercritical branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {788--794},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Multivariate extremes of random properties of particles in supercritical branching processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 788
EP  - 794
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/
LA  - ru
ID  - TVP_2012_57_4_a10
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Multivariate extremes of random properties of particles in supercritical branching processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 788-794
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/
%G ru
%F TVP_2012_57_4_a10
A. V. Lebedev. Multivariate extremes of random properties of particles in supercritical branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 788-794. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/