Multivariate extremes of random properties of particles in supercritical branching processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 788-794
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The author considers a supercritical Galton–Watson process $(Z_n)_{n\geqslant0}$ initiated by a single ancestor in which each particle has at least one descendant. It is further assumed that each particle is assigned $p\geqslant2$ random properties and that for different particles these properties are i.i.d. Denote by $M_i(n)$, $i=1,\dots,p$, the maximum of the ith property in the $n$th generation.
Assuming that $Z_n/\mathbb{E}Z_n$ converges in mean to a random variable $W$ and that the joint distribution of properties of a particle belongs to the maximum domain of attraction of a multidimensional nondegenerate law with distribution function $G$. Then it is proved that the vector $M_n:=(M_1(n),\dots,M_p(n))$, properly normalized and centered, converges in distribution. The limit law is given by the distribution function $\varphi(-\log G)$, where $\varphi(t):=\mathbb{E}e^{-tW}$, $t\geqslant0$. Without the assumptions stated above a more general result is also obtained: $M_n$, properly normalized and centered, converges in distribution if and only if the limit distribution function solves the functional equation (explicitly given in the paper).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
supercritical branching processes; maxima; multivariate extremes; copulas; max-semistable distributions.
                    
                  
                
                
                @article{TVP_2012_57_4_a10,
     author = {A. V. Lebedev},
     title = {Multivariate extremes of random properties of particles in supercritical branching processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {788--794},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/}
}
                      
                      
                    TY - JOUR AU - A. V. Lebedev TI - Multivariate extremes of random properties of particles in supercritical branching processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 788 EP - 794 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/ LA - ru ID - TVP_2012_57_4_a10 ER -
A. V. Lebedev. Multivariate extremes of random properties of particles in supercritical branching processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 788-794. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a10/
