About time of reaching a high level by a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 625-648

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(p_{i},q_{i}) $, $i\in \mathbb{Z}$, be a sequence of independent identically distributed pairs of random variables, where $p_{0}+q_{0}=1$ and, in addition, $p_{0}>0$ and $q_{0}>0 $ a.s. We consider a random walk in the random environment $(p_{i},q_{i}) $, $i\in \mathbb{Z}$. This means that in a fixed random environment a walking particle located at some moment $n$ at a state $i$ jumps at moment $n+1$ either to the state $(i+1)$ with probability $p_{i}$ or to the state $(i-1)$ with probability $q_{i}$. It is assumed that the distribution of the random variable $\log (q_{0}/p_{0})$ belongs (without centering) to the domain of attraction of the two-sided stable law with index $\alpha \in (0,2] $. Let $T_{n}$ be the first passage time of level $n$ by the mentioned random walk. We prove the invariance principle for the logarithm of the stochastic process $\{T_{\lfloor ns\rfloor},s\in [0,1] \}$ as $n\to \infty$. This result is based on the limit theorem for a branching process in a random environment which allows precisely one immigrant in each generation.
Keywords: random walk in random environment, branching process in random environment with immigration, functional limit theorems, stable Lévy processes.
@article{TVP_2012_57_4_a0,
     author = {V. I. Afanasyev},
     title = {About time of reaching a high level by a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--648},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - About time of reaching a high level by a random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 625
EP  - 648
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/
LA  - ru
ID  - TVP_2012_57_4_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T About time of reaching a high level by a random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 625-648
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/
%G ru
%F TVP_2012_57_4_a0
V. I. Afanasyev. About time of reaching a high level by a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 625-648. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/