About time of reaching a high level by a random walk in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 625-648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(p_{i},q_{i}) $, $i\in \mathbb{Z}$, be a sequence of independent identically distributed pairs of random variables, where $p_{0}+q_{0}=1$ and, in addition, $p_{0}>0$ and $q_{0}>0 $ a.s. We consider a random walk in the random environment $(p_{i},q_{i}) $, $i\in \mathbb{Z}$. This means that in a fixed random environment a walking particle located at some moment $n$ at a state $i$ jumps at moment $n+1$ either to the state $(i+1)$ with probability $p_{i}$ or to the state $(i-1)$ with probability $q_{i}$. It is assumed that the distribution of the random variable $\log (q_{0}/p_{0})$ belongs (without centering) to the domain of attraction of the two-sided stable law with index $\alpha \in (0,2] $. Let $T_{n}$ be the first passage time of level $n$ by the mentioned random walk. We prove the invariance principle for the logarithm of the stochastic process $\{T_{\lfloor ns\rfloor},s\in [0,1] \}$ as $n\to \infty$. This result is based on the limit theorem for a branching process in a random environment which allows precisely one immigrant in each generation.
Keywords: random walk in random environment, branching process in random environment with immigration, functional limit theorems
Mots-clés : stable Lévy processes.
@article{TVP_2012_57_4_a0,
     author = {V. I. Afanasyev},
     title = {About time of reaching a high level by a random walk in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--648},
     year = {2012},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - About time of reaching a high level by a random walk in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 625
EP  - 648
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/
LA  - ru
ID  - TVP_2012_57_4_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T About time of reaching a high level by a random walk in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 625-648
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/
%G ru
%F TVP_2012_57_4_a0
V. I. Afanasyev. About time of reaching a high level by a random walk in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 625-648. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a0/

[1] Ritter G. A., Random walk in a random environment, critical case, Thesis, Cornell Univ., Cornell, USA, 1976, 73 pp. | MR

[2] Kesten H., Kozlov M. V., Spitzer F., “A limit law for random walk in a random environment”, Compositio Math., 30 (1975), 145–168 | MR | Zbl

[3] Kallenberg O., Foundations of Modern Probability, 2nd edition, Springer-Verlag, New York, 2002, 638 pp. | MR

[4] Solomon F., “Random walks in a random environment”, Ann. Probab., 3:1 (1975), 1–31 | DOI | MR | Zbl

[5] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[6] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676 | DOI | MR | Zbl

[7] Afanasyev V. I., Boinghoff C., Kersting G., Vatutin V. A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee primen., 48:2 (2003), 274–300 | Zbl

[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 49:2 (2004), 231–268 | Zbl

[10] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primen., 51:1 (2006), 22–46 | MR

[11] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12:1 (1975), 39–46 | DOI | MR | Zbl

[12] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971, 664 pp.

[13] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskret. matem., 9:3 (1997), 52–67 | DOI | MR | Zbl

[14] Bertoin J., Levy Processes, Cambridge University Press, Cambridge, 1996, 265 pp. | MR

[15] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, v. 1, Fizmatlit, M., 1994, 544 pp.