A complete proof of universal inequalities for distribution function of binomial law
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 3, pp. 597-602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_3_a9,
     author = {A. M. Zubkov and A. A. Serov},
     title = {A complete proof of universal inequalities for distribution function of binomial law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--602},
     year = {2012},
     volume = {57},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - A. A. Serov
TI  - A complete proof of universal inequalities for distribution function of binomial law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 597
EP  - 602
VL  - 57
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/
LA  - ru
ID  - TVP_2012_57_3_a9
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A A. A. Serov
%T A complete proof of universal inequalities for distribution function of binomial law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 597-602
%V 57
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/
%G ru
%F TVP_2012_57_3_a9
A. M. Zubkov; A. A. Serov. A complete proof of universal inequalities for distribution function of binomial law. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 3, pp. 597-602. http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/

[1] Alfers D., Dinges H., “A normal approximation for beta and gamma tail probabilities”, Z. Wahrscheinlichkeitstheor. verw. Geb., 65:3 (1984), 399–420 | DOI | MR | Zbl

[2] Bernshtein S. N., “Vozvrat k voprosu o tochnosti predelnoi formuly Laplasa”, Izv. AN SSSR, 7:1 (1943), 3–14

[3] Feller W., “On the normal approximation to the binomial distribution”, Ann. Math. Statist., 16:4 (1945), 319–329 ; 21 (1950), 302 | DOI | MR | Zbl | DOI | MR

[4] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58:301 (1963), 13–30 | DOI | MR | Zbl

[5] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR

[6] Peizer D. B., Pratt J. W., “A normal approximation for binomial, $ F$, beta and other common, related tail probabilities, I”, J. Amer. Statist. Assoc., 1968, no. 63, 1416–1456 | MR | Zbl

[7] Pratt J. W., “A normal approximation for binomial, $F$, beta and other common, related tail probabilities, II”, J. Amer. Statist. Assoc., 1968, no. 63, 1457–1483 | MR | Zbl

[8] Zubkov A. M., Serov A. A., “Otsenki chisla bulevykh funktsii, imeyuschikh affinnye priblizheniya zadannoi tochnosti”, Diskretn. matem., 22:4 (2010), 3–19 | MR | Zbl