@article{TVP_2012_57_3_a9,
author = {A. M. Zubkov and A. A. Serov},
title = {A complete proof of universal inequalities for distribution function of binomial law},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {597--602},
year = {2012},
volume = {57},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/}
}
TY - JOUR AU - A. M. Zubkov AU - A. A. Serov TI - A complete proof of universal inequalities for distribution function of binomial law JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 597 EP - 602 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/ LA - ru ID - TVP_2012_57_3_a9 ER -
A. M. Zubkov; A. A. Serov. A complete proof of universal inequalities for distribution function of binomial law. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 3, pp. 597-602. http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a9/
[1] Alfers D., Dinges H., “A normal approximation for beta and gamma tail probabilities”, Z. Wahrscheinlichkeitstheor. verw. Geb., 65:3 (1984), 399–420 | DOI | MR | Zbl
[2] Bernshtein S. N., “Vozvrat k voprosu o tochnosti predelnoi formuly Laplasa”, Izv. AN SSSR, 7:1 (1943), 3–14
[3] Feller W., “On the normal approximation to the binomial distribution”, Ann. Math. Statist., 16:4 (1945), 319–329 ; 21 (1950), 302 | DOI | MR | Zbl | DOI | MR
[4] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58:301 (1963), 13–30 | DOI | MR | Zbl
[5] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR
[6] Peizer D. B., Pratt J. W., “A normal approximation for binomial, $ F$, beta and other common, related tail probabilities, I”, J. Amer. Statist. Assoc., 1968, no. 63, 1416–1456 | MR | Zbl
[7] Pratt J. W., “A normal approximation for binomial, $F$, beta and other common, related tail probabilities, II”, J. Amer. Statist. Assoc., 1968, no. 63, 1457–1483 | MR | Zbl
[8] Zubkov A. M., Serov A. A., “Otsenki chisla bulevykh funktsii, imeyuschikh affinnye priblizheniya zadannoi tochnosti”, Diskretn. matem., 22:4 (2010), 3–19 | MR | Zbl