@article{TVP_2012_57_3_a5,
author = {I. G. Shevtsova},
title = {Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {499--532},
year = {2012},
volume = {57},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a5/}
}
TY - JOUR AU - I. G. Shevtsova TI - Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2012 SP - 499 EP - 532 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a5/ LA - ru ID - TVP_2012_57_3_a5 ER -
%0 Journal Article %A I. G. Shevtsova %T Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables %J Teoriâ veroâtnostej i ee primeneniâ %D 2012 %P 499-532 %V 57 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a5/ %G ru %F TVP_2012_57_3_a5
I. G. Shevtsova. Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 3, pp. 499-532. http://geodesic.mathdoc.fr/item/TVP_2012_57_3_a5/
[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR
[2] Gaponova M. O., Shevtsova I. G., “Asimptoticheskie otsenki absolyutnoi postoyannoi v neravenstve Berri–Esseena dlya raspredelenii, ne imeyuschikh tretego momenta”, Inform. i ee primen., 3:4 (2009), 41–56 | MR
[3] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summy nezavisimykh sluchainykh velichin, GITTL, M.–L., 1949, 264 pp. | MR
[4] Grigoreva M. E., Shevtsova I. G., “Utochnenie neravenstva Katsa–Berri–Esseena”, Inform. i ee primen., 4:2 (2010), 78–85
[5] Zolotarev V. M., “Absolyutnaya otsenka ostatochnogo chlena v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 11:1 (1966), 108–119 | MR | Zbl
[6] Kolmogorov A. N., “Nekotorye raboty poslednikh let v oblasti predelnykh teorem teorii veroyatnostei”, Vestn. Mosk. un-ta, 10 (1953), 29–38 | Zbl
[7] Korolev V. Yu., Shevtsova I. G., “Utochnenie neravenstva Berri–Esseena”, Dokl. RAN, 430:6 (2010), 738–742 | MR | Zbl
[8] Korolev V. Yu., Shevtsova I. G., “O verkhnei otsenke absolyutnoi postoyannoi v neravenstve Berri–Esseena”, Teoriya veroyatn. i ee primen., 54:4 (2009), 671–695 | MR
[9] Korolev V. Yu., Shevtsova I. G., “Novaya momentnaya otsenka skorosti skhodimosti v teoreme Lyapunova”, Teoriya veroyatn. i ee primen., 55:3 (2010), 577–582 | MR
[10] Lyapunov A. M., “Ob odnoi teoreme teorii veroyatnostei”, Izv. Akad. nauk, V ser., 13:4 (1900), 359–386 | Zbl
[11] Lyapunov A. M., “Novaya forma teoremy o predele veroyatnosti”, Zapiski Akademii Nauk po fiziko-matematicheskomu otdeleniyu, VIII ser., 12:5 (1901), 1–24 | MR
[12] Tyurin I. S., “Utochnenie ostatochnogo chlena v teoreme Lyapunova”, Teoriya veroyatn. i ee primen., 56:4 (2011), 808–811
[13] Chistyakov G. P., “Asimptoticheski nailuchshie postoyannye v teoreme Lyapunova”, Zap. nauchn. sem. POMI, 228, 1996, 349–355 | MR | Zbl
[14] Chistyakov G. P., “Novoe asimptoticheskoe razlozhenie i asimptoticheski nailuchshie postoyannye v teoreme Lyapunova. I; II; III”, Teoriya veroyatn. i ee primen., 46:2 (2001), 326–344 ; 46:3, 573–579 ; 47:3 (2002), 475–497 | MR | Zbl | MR | MR | Zbl
[15] Shevtsova I. G., “Nizhnyaya asimptoticheski pravilnaya postoyannaya v tsentralnoi predelnoi teoreme”, Dokl. RAN, 430:4 (2010), 466–469 | MR | Zbl
[16] Shevtsova I. G., “Ob asimptoticheski pravilnykh postoyannykh v neravenstve Berri–Esseena–Katsa”, Teoriya veroyatn. i ee primen., 55:2 (2010), 271–304 | MR
[17] Shevtsova I. G., “O tochnosti normalnoi approksimatsii dlya summ nezavisimykh sluchainykh velichin”, Dokl. RAN, 443:5 (2012), 555–560 | Zbl
[18] Bentkus V., On the asymptotical behaviour of the constant in the Berry–Esseen inequality, Preprint No 91–078, Universität Bielefeld, 1991
[19] Bentkus V., “On the asymptotical behaviour of the constant in the Berry–Esseen inequality”, J. Theoret. Probab., 7:2 (1994), 211–224 | DOI | MR | Zbl
[20] Berry A. C., “The accuracy of the Gaussian approximation to the sum of independent variates”, Trans. Amer. Math. Soc., 49 (1941), 122–139 | DOI | MR
[21] Cramér H., “Das Gesetz von Gauss und die Theorie des Risikos”, Skand. Aktuarietidskr., 6 (1923), 209–237
[22] Cramér H., “On the composition of elementary errors”, Skand. Aktuarietidskr., 11 (1928), 141–180 | Zbl
[23] Esseen C.-G., “On the Liapunoff limit of error in the theory of probability”, Ark. Mat. Astron. Fys. A, 28:9 (1942), 1–19 | MR | Zbl
[24] Esseen C.-G., “Determination of the maximum deviation from the Gaussian law”, Ark. Mat. Astron. Fys. A, 29:20 (1943), 1–10 | MR
[25] Esseen C.-G., “Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law”, Acta Math., 77:1 (1945), 1–125 | DOI | MR | Zbl
[26] Esseen C.-G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR
[27] Hipp Ch., Mattner L., “On the normal approximation to symmetric binomial distributions”, Teoriya veroyatn. i ee primen., 52:3 (2007), 610–617 | MR
[28] Korolev V., Shevtsova I., “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuarial J., 2012:2 (2012), 81–105 | DOI | MR
[29] Prawitz H., “Limits for a distribution, if the characteristic function is given in a finite domain”, Skand. Aktuarietidskr., 1972, 138–154 | MR
[30] Prawitz H., “On the remainder in the central limit theorem. I: One-dimensional independent variables with finite absolute moments of third order”, Scand. Actuarial J., 1975, no. 3, 145–156 | DOI | MR | Zbl
[31] Shevtsova I., On the absolute constants in the Berry–Esseen type inequalities for identically distributed summands, 2011, arXiv: 1111.6554v1[math.PR]
[32] Shevtsova I., “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Ann. Math. Inform., 39 (2012), 241–307 | MR
[33] Tysiak W., Gleichmßige und nicht-gleichmßige Berry–Esseen-Abschätzungen, Dissertation, Wuppertal, 1983 | Zbl
[34] Zahl S., Bounds for the central limit theorem error, Ph.D. Thesis, Harward University, Cambridge, 1963 | MR
[35] Zahl S., “Bounds for the central limit theorem error”, SIAM J. Appl. Math., 14:6 (1966), 1225–1245 | DOI | MR | Zbl