@article{TVP_2012_57_2_a8,
author = {A. O. Golosov},
title = {Uniform laws for stationary random functions on compact groups},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {370--377},
year = {2012},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a8/}
}
A. O. Golosov. Uniform laws for stationary random functions on compact groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 370-377. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a8/
[1] Kallenberg O., Foundations of Modern Probability, Springer-Verlag, New York–Berlin–Heidelberg, 1997, xii+523 pp. | MR
[2] Donati-Martin C., Matsumoto H., Yor M., “On striking identities about the exponential functionals of the Brownian bridge and Brownian motion”, Period. Math. Hungar., 41:1–2 (2000), 103–119 | DOI | MR
[3] Hobson D., “A short proof of an identity for a Brownian bridge due to Donati-Martin, Matsumoto and Yor”, Statist. Probab. Lett., 77:2 (2007), 148–150 | DOI | MR
[4] Knight F. B., “The uniform law for exchangeable and Lévy process bridges. Hommage à P. A. Meyer et J. Neveu”, Astérisque, 236, 1996, 171–188 | MR
[5] Chaumont L., Hobson D. G., Yor M., “Some consequences of the cyclic exchangeability property for exponential functionals of Lévy processes”, Lecture Notes in Math., 1755 (2001), 334–347 | DOI | MR
[6] Burbaki N., Integrirovanie. Vektornoe integrirovanie. Mera Khaara. Svertka i predstavleniya, Nauka, M., 1970, 320 pp.
[7] Dobrushin R. L., Minlos R. A., “Faktor-mery na izmerimykh prostranstvakh”, Tr. MMO, 32, 1975, 77–92 | MR
[8] Vervaat W., “A relation between Brownian bridge and Brownian excursion”, Ann. Probab., 7:1 (1979), 143–149 | DOI | MR
[9] Biane Ph., “Relations entre pont et excursion du mouvement brownien réel”, Ann. Inst. H. Poincaré, 22:1 (1986), 1–7 | MR