On the integral square deviation of one nonparametric estimation of the Bernoulli regession
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 322-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_2_a5,
     author = {\`E. A. Nadaraya and P. Babilua and G. A. Sokhadze},
     title = {On the integral square deviation of one nonparametric estimation of the {Bernoulli} regession},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {322--336},
     year = {2012},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a5/}
}
TY  - JOUR
AU  - È. A. Nadaraya
AU  - P. Babilua
AU  - G. A. Sokhadze
TI  - On the integral square deviation of one nonparametric estimation of the Bernoulli regession
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 322
EP  - 336
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a5/
LA  - ru
ID  - TVP_2012_57_2_a5
ER  - 
%0 Journal Article
%A È. A. Nadaraya
%A P. Babilua
%A G. A. Sokhadze
%T On the integral square deviation of one nonparametric estimation of the Bernoulli regession
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 322-336
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a5/
%G ru
%F TVP_2012_57_2_a5
È. A. Nadaraya; P. Babilua; G. A. Sokhadze. On the integral square deviation of one nonparametric estimation of the Bernoulli regession. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 322-336. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a5/

[1] Efromovich S., Nonparametric Curve Estimation. Methods, Theory, and Applications, Springer-Verlag, New York, 1999, 411 pp. | MR

[2] Copas J. B., “Plotting $p$ against $x$”, Appl. Statist., 32:1 (1983), 25–31 | DOI

[3] Okumura H., Naito K., “Weighted kernel estimators in nonparametric binomial regression”, J. Nonparametr. Statist., 16:1–2 (2004), 39–62 | DOI | MR | Zbl

[4] Mandzhgaladze K. V., “Ob odnoi otsenke funktsii raspredeleniya i ee momentov”, Soobsch. AN GrSSR, 124:2 (1986), 261–263 | MR | Zbl

[5] Nadaraya E. A., “Ob otsenke regressii”, Teoriya veroyatn. i ee primen., 9:1 (1964), 157–159 | MR | Zbl

[6] Watson G. S., “Smooth regression analysis”, Sankhyā Ser. A, 26 (1964), 359–372 | MR | Zbl

[7] Nadaraya E., Babilua P., Sokhadze G., “Estimation of a distribution function by an indirect sample”, Ukr. matem. zhurn., 62:12 (2010), 1642–1658 | MR | Zbl

[8] Liptser R. Sh., Shiryaev A. N., “Funktsionalnaya tsentralnaya predelnaya teorema dlya semimartingalov”, Teoriya veroyatn. i ee primen., 25:4 (1980), 683–703 | MR | Zbl

[9] Hart J. D., Wehrly Th. E., “Kernel regression when the boundary region is large, with an application to testing the adequacy of polynomial models”, J. Amer. Statist. Assoc., 87:420 (1992), 1018–1024 | DOI | MR | Zbl

[10] Absava R. M., Nadaraya E. A., Nekotorye zadachi teorii neparametricheskogo otsenivaniya funktsionalnykh kharakteristik zakona raspredeleniya nablyudenii, Izd-vo Tbil. un-ta, Tbilisi, 2005, 247 pp.

[11] Ioannides D. A., “Integrated square error of nonparametric estimators of regression function: the fixed design case”, Statist. Probab. Lett., 15:2 (1992), 85–94 | DOI | MR

[12] Absava R., Nadaraya E., “On quadratic measure of deviation of non-parametric estimation of the Gasser–Müller regression function”, Proc. A. Razmadze Math. Inst., 122 (2000), 1–14 | MR