Sobolev regularity of transportation of probability measures and transportation inequalities
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 296-321 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TVP_2012_57_2_a4,
     author = {A. V. Kolesnikov},
     title = {Sobolev regularity of transportation of probability measures and transportation inequalities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {296--321},
     year = {2012},
     volume = {57},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a4/}
}
TY  - JOUR
AU  - A. V. Kolesnikov
TI  - Sobolev regularity of transportation of probability measures and transportation inequalities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 296
EP  - 321
VL  - 57
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a4/
LA  - ru
ID  - TVP_2012_57_2_a4
ER  - 
%0 Journal Article
%A A. V. Kolesnikov
%T Sobolev regularity of transportation of probability measures and transportation inequalities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 296-321
%V 57
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a4/
%G ru
%F TVP_2012_57_2_a4
A. V. Kolesnikov. Sobolev regularity of transportation of probability measures and transportation inequalities. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 296-321. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a4/

[1] Ambrosio L., Gigli N., Savaré G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Birkhäuser, Basel, 2005, 333 pp. | MR | Zbl

[2] Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, Springer-Verlag, Berlin, 1998, 430 pp. | MR | Zbl

[3] Caffarelli L. A., “Interior $W^{2,p}$ estimates for solutions of the Monge–Ampère equation”, Ann. Math., 131:1 (1990), 135–150 | DOI | MR | Zbl

[4] Caffarelli L. A., “Monotonicity properties of optimal transportation and the FKG and related inequalities”, Comm. Math. Phys., 214:3 (2000), 547–563 | DOI | MR | Zbl

[5] Caffarelli L. A., Cabré X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc., Providence, 1995, 104 pp. | MR

[6] Carlen E. A., “Superadditivity of Fisher's information and logarithmic Sobolev inequalities”, J. Funct. Anal., 101:1 (1991), 194–211 | DOI | MR | Zbl

[7] Delanoë P., Loeper G., “Gradient estimates for potentials of invertible gradient mappings on the sphere”, Calc. Var. Partial Diff. Equations, 26:3 (2006), 297–311 | DOI | MR | Zbl

[8] Fan K., “On a theorem of Weyl concerning eigenvalues of linear transformations. I”, Proc. Natl. Acad. Sci. U.S.A., 35 (1949), 652–655 | DOI | MR

[9] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 403 pp.

[10] Gozlan N., Léonard Ch., “Transport inequalities. A survey”, Markov Process. Related Fields, 16:4 (2010), 635–736 | MR | Zbl

[11] Gutiérrez C. E., The Monge–Ampère Equation, Birkhäuser, Boston, 2011, 127 pp. | MR

[12] Kim Y.-H., Milman E., “A Generalization of Caffarelli's contraction theorem via (reverse) heat flow”, Math. Ann. (to appear)

[13] Kim Y.-H., McCann R. J., “Continuity, curvature, and the general covariance of optimal transportation”, J. Eur. Math. Soc. (JEMS), 12:4 (2010), 1009–1040 | DOI | MR | Zbl

[14] Kolesnikov A. V., “Convexity inequalities and optimal transport of infinite-dimensional measures”, J. Math. Pures Appl., 83:11 (2004), 1373–1404 | MR | Zbl

[15] Krylov N. V., “Fully nonlinear second order elliptic equations: recent developments”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:3–4 (1997), 569–595 | MR | Zbl

[16] Ledoux M., The Concentration of Measure Phenomenon, Amer. Math. Soc., Providence, 2001, 181 pp. | MR | Zbl

[17] Loeper G., “On the regularity of solutions of optimal transportation problems”, Acta Math., 202:2 (2009), 241–283 | DOI | MR | Zbl

[18] McCann R. J., “A convexity principle for interacting gases”, Adv. Math., 128:1 (1997), 153–179 | DOI | MR | Zbl

[19] Milman E., “On the role of convexity in functional and isoperimetric inequalities”, Proc. London Math. Soc., 99:1 (2009), 32–66 | DOI | MR | Zbl

[20] Milman E., “On the role of convexity in isoperimetry, spectral gap and concentration”, Invent. Math., 177:1 (2009), 1–43 | DOI | MR | Zbl

[21] Talagrand M., “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6:3 (1996), 587–600 | DOI | MR | Zbl

[22] Trudinger N. S., Wang X.-J., “On the second boundary value problem for Monge–Ampère type equations and optimal transportation”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8:1 (2009), 143–174 | MR | Zbl

[23] Valdimarsson S. I., “On the Hessian of optimal transport potential”, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), 6:3 (2007), 441–456 | MR | Zbl

[24] Villani C., Topics in Optimal Transportation, Amer. Math. Soc., Providence, Rhode Island, 2003, 370 pp. | MR | Zbl

[25] Bakelman I. Ya., Geometricheskie metody resheniya ellipticheskikh uravnenii, Nauka, M., 1965, 340 pp.

[26] Bogachev V. I., Osnovy teorii mery, v. 1, 2, RKhD, M.–Izhevsk, 2006, 583 s., 679 pp.

[27] Bogachev V. I., Differentsiruemye mery i ischislenie Mallyavena, RKhD, M.–Izhevsk, 2008, 543 pp.

[28] Bogachev V. I., Kolesnikov A. V., “Integriruemost absolyutno nepreryvnykh preobrazovanii mer i primeneniya k optimalnomu perenosu”, Teoriya veroyatn. i ee primen., 50:3 (2005), 433–456 | MR | Zbl

[29] Bogachev V. I., Kolesnikov A. V., Medvedev K. V., “Treugolnye preobrazovaniya mer”, Matem. sb., 196:3 (2005), 3–30 | DOI

[30] Ivochkina N. M., “Postroenie apriornykh otsenok dlya vypuklykh reshenii uravneniya Monzha–Ampera integralnym metodom”, Ukr. matem. zhurn., 30:1 (1978), 45–53

[31] Kolesnikov A. V., “Globalnye gëlderovy otsenki dlya optimalnoi transportirovki”, Matem. zametki, 88:5 (2010), 708–728 | DOI | MR | Zbl

[32] Ovsienko Yu. V., Zhdanov R. I., “Otsenki dlya sobolevskikh norm treugolnykh otobrazhenii”, Vestn. Mosk. un-ta, 62:1 (2007), 1–4

[33] Pogorelov A. V., Mnogomernoe uravnenie Monzha–Ampera, Nauka, M., 1988, 93 pp.