@article{TVP_2012_57_2_a3,
author = {I. A. Kareev},
title = {Lower bounds for average sample size and efficiency of sequential selection procedures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {278--295},
year = {2012},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a3/}
}
I. A. Kareev. Lower bounds for average sample size and efficiency of sequential selection procedures. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 278-295. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a3/
[1] Volodin I. N., “Nizhnie granitsy dlya srednego ob'ema vyborki i effektivnost protsedur statisticheskogo vyvoda”, Teoriya veroyatn. i ee primen., 24:1 (1979), 119–129 | MR | Zbl
[2] Volodin I. N., “Nizhnie granitsy dlya srednego ob'ema vyborki v kriteriyakh soglasiya i odnorodnosti”, Teoriya veroyatn. i ee primen., 24:3 (1979), 637–645 | MR | Zbl
[3] Volodin I. N., “Nizhnie granitsy dlya srednego ob'ema vyborki v kriteriyakh invariantnosti”, Teoriya veroyatn. i ee primen., 25:2 (1980), 359–364 | MR | Zbl
[4] Volodin I. N., “Nizhnie granitsy dlya srednego ob'ema vyborki v protsedurakh s upravleniem”, Teoriya veroyatn. i ee primen., 26:3 (1981), 630–631
[5] Malyutov M. B. Nizhnie granitsy dlya srednei dlitelnosti posledovatelno planiruemogo eksperimenta, Izv. vuzov, ser. matem., 1983, no. 11, 19–41
[6] Novikov A. A., “Effektivnost protsedur otbora”, Issled. po prikl. matem., 11:2 (1984), 43–51 | Zbl
[7] Kao S. C., Lai T. L., “Sequential selection procedures based on confidence sequences for normal populations”, Comm. Statist. A: Theory Methods, 9:16 (1980), 1657–1676 | DOI | MR
[8] Bechhofer R. E., Kiefer J., Sobel M., Sequential Identification and Ranking Procedures, with Special Reference to Koopman–Darmois Populations, Univ. Chicago Press, Chicago, 1968, 420 pp. | MR | Zbl
[9] Gupta S. S., “Selection and ranking procedures: a brief introduction”, Comm. Statist. A: Theory Methods, 6 (1977), 993–1001 | DOI
[10] Bechhofer R. E., “A single-sample multiple decision procedure for ranking means of normal populations with known variances”, Ann. Math. Statist., 25 (1954), 16–39 | DOI | MR | Zbl
[11] Gupta S. S., On a decision rule for a problem in ranking means, Ph.D. Thesis (Mimeo. Ser. No 150), Inst. of Statistics, University of North Carolina, Chapel Hill, NC, 1956 | MR
[12] Galtchouk L. I., Maljutov M. B., “One bound for the mean duration of sequential testing homogeneity”, MODA 4 — Advances in Model-Oriented Data Analysis (Spetses, 1995), Phisica, Heidelberg, 1995, 49–56 | MR
[13] Simons G., “Lower bounds for average sample number of sequential multihypothesis tests”, Ann. Math. Statist., 38:5 (1967), 1343–1364 | DOI | MR | Zbl