@article{TVP_2012_57_2_a2,
author = {A. V. Gol'denshlyuger and O. V. Lepskiǐ},
title = {General procedure for selecting linear estimators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {257--277},
year = {2012},
volume = {57},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a2/}
}
A. V. Gol'denshlyuger; O. V. Lepskiǐ. General procedure for selecting linear estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 2, pp. 257-277. http://geodesic.mathdoc.fr/item/TVP_2012_57_2_a2/
[1] Efroimovich S. Yu., Pinsker M. S., “Samoobuchayuschiisya algoritm neparametricheskoi filtratsii”, Avtomatika i telemekhanika, 11 (1984), 58–65 | Zbl
[2] Golubev G. K., “Asimptoticheski minimaksnoe otsenivanie funktsii regressii v additivnoi modeli”, Probl. peredachi inform., 28 (1992), 3–15 | MR
[3] Ibragimov I. A., “Ob otsenke mnogomernoi regressii”, Teoriya veroyatn. i ee primen., 48:2 (2003), 301–320 | Zbl
[4] Ibragimov I. A., Khasminskii R. Z., “Ob otsenke plotnosti raspredeleniya”, Zapiski nauch. sem. LOMI, 98, 1980, 61–85 | MR | Zbl
[5] Ibragimov I. A., Khasminskii R. Z., “Esche ob otsenke plotnosti raspredeleniya”, Zapiski nauch. sem. LOMI, 108, 1981, 72–88
[6] Lepskii O. V., “Ob odnoi zadache adaptivnogo otsenivaniya v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 35:3 (1990), 459–470 | MR | Zbl
[7] Lepskii O. V., “Asimptoticheski minimaksnoe adaptivnoe otsenivanie. I. Verkhnie granitsy. Optimalno-adaptivnye otsenki”, Teoriya veroyatn. i ee primen., 36:4 (1991), 645–659 | MR | Zbl
[8] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 246 pp.
[9] Bretagnolle J., Huber C., “Estimation des densités: risque minimax”, Z. Wahrscheinlichkeitstheor. verw. Geb., 47:2 (1979), 119–137 | DOI | MR | Zbl
[10] Donoho D. L., Johnstone I. M., Kerkyacharian G., Picard D., “Density estimation by wavelet thresholding”, Ann. Statist., 24 (1996), 508–539 | DOI | MR | Zbl
[11] Chen H., “Estimation of a projection-pursuit type regression model”, Ann. Statist., 19 (1991), 142–157 | DOI | MR | Zbl
[12] Folland G. B., Real Analysis, Wiley, New York, 1999, 386 pp. | MR | Zbl
[13] Goldenshluger A., Lepski O., “Universal pointwise selection rule in multivariable function estimation”, Bernoulli, 14:4 (2008), 1150–1190 | DOI | MR | Zbl
[14] Goldenshluger A., Lepski O., “Structural adaptation via $L_p$-norm oracle inequalities”, Probab. Theory Related Fields, 143:1–2 (2009), 41–71 | DOI | MR | Zbl
[15] Goldenshluger A., Lepski O., “Uniform bounds for norms of sums of independent random functions”, Ann. Probab., 39:6 (2010), 2318–2384 | DOI | MR
[16] Goldenshluger A., Lepski O., “Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality”, Ann. Statist., 39:3 (2011), 1608–1632 | DOI | MR | Zbl
[17] Györfi L., Kohler M., Krzyzak A., Walk H., A Distribution-Free Theory of Nonparametric Regression, Springer, New York, 2002, 647 pp.
[18] Hasminskii R., Ibragimov I., “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR | Zbl
[19] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp.
[20] Juditsky A., Lambert-Lacroix S., “On minimax density estimation on $\mathbb R$”, Bernoulli, 10:2 (2004), 187–220 | DOI | MR | Zbl
[21] Kerkyacharian G., Picard D., Tribouley K., “$L^p$ adaptive density estimation”, Bernoulli, 2:3 (1996), 229–247 | MR | Zbl
[22] Kneip A., “Ordered linear smoothers”, Ann. Statist., 22:6 (1994), 835–866 | DOI | MR | Zbl
[23] Nicoleris T., Yatracos Y., “Rates of convergence of estimators, Kolmogorov's entropy and the dimensionality reduction principle in regression”, Ann. Statist., 25:6 (1997), 2493–2511 | DOI | MR | Zbl
[24] Stone C. J., “Additive regression and other nonparametric models”, Ann. Statist., 13:2 (1985), 689–705 | DOI | MR | Zbl